mindspore/tests/ut/python/dataset/test_basic_tokenizer.py

84 lines
3.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing BasicTokenizer op in DE
"""
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
import mindspore.dataset.text as nlp
BASIC_TOKENIZER_FILE = "../data/dataset/testTokenizerData/basic_tokenizer.txt"
test_paras = [
dict(
first=1,
last=6,
expected_tokens=
[['Welcome', 'to', 'Beijing', '', '', '', '', ''],
['', '', '', '', '', '', '', '', '', '', '', '', '', '', ''],
['😀', '', '', '😃', '', '', '😄', '', '', '😁', '', ''],
['', '', '', '1368', '', '1644', '', '', '', '', '',
'', '1644', '', '1911', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', ''],
['', '', '', '1368', '-', '1644', '', '', '', '',
'', '1644', '-', '1911', '', '', '', '', '', '', '',
'', '', '', '', '', '', 'における', '', '', 'の2つの', '', '', 'でした'],
['명나라', '(', '1368', '-', '1644', ')', '', '청나라', '(', '1644', '-', '1911', ')', '',
'중국', '봉건', '왕조의', '역사에서', '마지막', '', '왕조였다']]
),
dict(
first=7,
last=7,
expected_tokens=[['this', 'is', 'a', 'funky', 'string']],
lower_case=True
),
]
def check_basic_tokenizer(first, last, expected_tokens, lower_case=False, keep_whitespace=False,
normalization_form=nlp.utils.NormalizeForm.NONE, preserve_unused_token=False):
dataset = ds.TextFileDataset(BASIC_TOKENIZER_FILE, shuffle=False)
if first > 1:
dataset = dataset.skip(first - 1)
if last >= first:
dataset = dataset.take(last - first + 1)
basic_tokenizer = nlp.BasicTokenizer(lower_case=lower_case,
keep_whitespace=keep_whitespace,
normalization_form=normalization_form,
preserve_unused_token=preserve_unused_token)
dataset = dataset.map(operations=basic_tokenizer)
count = 0
for i in dataset.create_dict_iterator():
text = nlp.to_str(i['text'])
logger.info("Out:", text)
logger.info("Exp:", expected_tokens[count])
np.testing.assert_array_equal(text, expected_tokens[count])
count = count + 1
def test_basic_tokenizer():
"""
Test BasicTokenizer
"""
for paras in test_paras:
check_basic_tokenizer(**paras)
if __name__ == '__main__':
test_basic_tokenizer()