forked from mindspore-Ecosystem/mindspore
54 lines
1.8 KiB
Python
54 lines
1.8 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import os
|
|
import shutil
|
|
import glob
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
from mindspore.profiler import Profiler
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.add = P.Add()
|
|
|
|
def construct(self, x_, y_):
|
|
return self.add(x_, y_)
|
|
|
|
|
|
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
|
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
@pytest.mark.security_off
|
|
def test_ascend_profiling():
|
|
if os.path.isdir("./data_ascend_profiler"):
|
|
shutil.rmtree("./data_ascend_profiler")
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
profiler = Profiler(output_path="./data_ascend_profiler", is_detail=True, is_show_op_path=False, subgraph="all")
|
|
add = Net()
|
|
add(Tensor(x), Tensor(y))
|
|
profiler.analyse()
|
|
assert len(glob.glob("./data_ascend_profiler/profiler*/JOB*/data/Framework*")) == 6
|