forked from mindspore-Ecosystem/mindspore
134 lines
5.7 KiB
Python
134 lines
5.7 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import argparse
|
|
import numpy as np
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
from src.model import LeNet5
|
|
from src.adam import AdamWeightDecayOp
|
|
|
|
parser = argparse.ArgumentParser(description="test_fl_lenet")
|
|
parser.add_argument("--device_target", type=str, default="CPU")
|
|
parser.add_argument("--server_mode", type=str, default="FEDERATED_LEARNING")
|
|
parser.add_argument("--ms_role", type=str, default="MS_WORKER")
|
|
parser.add_argument("--worker_num", type=int, default=0)
|
|
parser.add_argument("--server_num", type=int, default=1)
|
|
parser.add_argument("--scheduler_ip", type=str, default="127.0.0.1")
|
|
parser.add_argument("--scheduler_port", type=int, default=8113)
|
|
parser.add_argument("--fl_server_port", type=int, default=6666)
|
|
parser.add_argument("--start_fl_job_threshold", type=int, default=1)
|
|
parser.add_argument("--start_fl_job_time_window", type=int, default=3000)
|
|
parser.add_argument("--update_model_ratio", type=float, default=1.0)
|
|
parser.add_argument("--update_model_time_window", type=int, default=3000)
|
|
parser.add_argument("--fl_name", type=str, default="Lenet")
|
|
parser.add_argument("--fl_iteration_num", type=int, default=25)
|
|
parser.add_argument("--client_epoch_num", type=int, default=20)
|
|
parser.add_argument("--client_batch_size", type=int, default=32)
|
|
parser.add_argument("--client_learning_rate", type=float, default=0.1)
|
|
parser.add_argument("--scheduler_manage_port", type=int, default=11202)
|
|
parser.add_argument("--config_file_path", type=str, default="")
|
|
parser.add_argument("--encrypt_type", type=str, default="NOT_ENCRYPT")
|
|
# parameters for encrypt_type='DP_ENCRYPT'
|
|
parser.add_argument("--dp_eps", type=float, default=50.0)
|
|
parser.add_argument("--dp_delta", type=float, default=0.01) # 1/worker_num
|
|
parser.add_argument("--dp_norm_clip", type=float, default=1.0)
|
|
# parameters for encrypt_type='PW_ENCRYPT'
|
|
parser.add_argument("--share_secrets_ratio", type=float, default=1.0)
|
|
parser.add_argument("--cipher_time_window", type=int, default=300000)
|
|
parser.add_argument("--reconstruct_secrets_threshold", type=int, default=3)
|
|
|
|
args, _ = parser.parse_known_args()
|
|
device_target = args.device_target
|
|
server_mode = args.server_mode
|
|
ms_role = args.ms_role
|
|
worker_num = args.worker_num
|
|
server_num = args.server_num
|
|
scheduler_ip = args.scheduler_ip
|
|
scheduler_port = args.scheduler_port
|
|
fl_server_port = args.fl_server_port
|
|
start_fl_job_threshold = args.start_fl_job_threshold
|
|
start_fl_job_time_window = args.start_fl_job_time_window
|
|
update_model_ratio = args.update_model_ratio
|
|
update_model_time_window = args.update_model_time_window
|
|
share_secrets_ratio = args.share_secrets_ratio
|
|
cipher_time_window = args.cipher_time_window
|
|
reconstruct_secrets_threshold = args.reconstruct_secrets_threshold
|
|
fl_name = args.fl_name
|
|
fl_iteration_num = args.fl_iteration_num
|
|
client_epoch_num = args.client_epoch_num
|
|
client_batch_size = args.client_batch_size
|
|
client_learning_rate = args.client_learning_rate
|
|
scheduler_manage_port = args.scheduler_manage_port
|
|
config_file_path = args.config_file_path
|
|
dp_eps = args.dp_eps
|
|
dp_delta = args.dp_delta
|
|
dp_norm_clip = args.dp_norm_clip
|
|
encrypt_type = args.encrypt_type
|
|
|
|
ctx = {
|
|
"enable_fl": True,
|
|
"server_mode": server_mode,
|
|
"ms_role": ms_role,
|
|
"worker_num": worker_num,
|
|
"server_num": server_num,
|
|
"scheduler_ip": scheduler_ip,
|
|
"scheduler_port": scheduler_port,
|
|
"fl_server_port": fl_server_port,
|
|
"start_fl_job_threshold": start_fl_job_threshold,
|
|
"start_fl_job_time_window": start_fl_job_time_window,
|
|
"update_model_ratio": update_model_ratio,
|
|
"update_model_time_window": update_model_time_window,
|
|
"share_secrets_ratio": share_secrets_ratio,
|
|
"cipher_time_window": cipher_time_window,
|
|
"reconstruct_secrets_threshold": reconstruct_secrets_threshold,
|
|
"fl_name": fl_name,
|
|
"fl_iteration_num": fl_iteration_num,
|
|
"client_epoch_num": client_epoch_num,
|
|
"client_batch_size": client_batch_size,
|
|
"client_learning_rate": client_learning_rate,
|
|
"scheduler_manage_port": scheduler_manage_port,
|
|
"config_file_path": config_file_path,
|
|
"dp_eps": dp_eps,
|
|
"dp_delta": dp_delta,
|
|
"dp_norm_clip": dp_norm_clip,
|
|
"encrypt_type": encrypt_type
|
|
}
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=device_target, save_graphs=False)
|
|
context.set_fl_context(**ctx)
|
|
|
|
if __name__ == "__main__":
|
|
epoch = 5
|
|
np.random.seed(0)
|
|
network = LeNet5(62)
|
|
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
|
net_adam_opt = AdamWeightDecayOp(network.trainable_params(), weight_decay=0.1)
|
|
net_with_criterion = WithLossCell(network, criterion)
|
|
train_network = TrainOneStepCell(net_with_criterion, net_opt)
|
|
train_network.set_train()
|
|
losses = []
|
|
|
|
for _ in range(epoch):
|
|
data = Tensor(np.random.rand(32, 3, 32, 32).astype(np.float32))
|
|
label = Tensor(np.random.randint(0, 61, (32)).astype(np.int32))
|
|
loss = train_network(data, label).asnumpy()
|
|
losses.append(loss)
|
|
print(losses)
|