mindspore/tests/st/nn/test_nn_reflectionpad.py

187 lines
7.7 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_reflection_pad1d_input3d(mode):
"""
Feature: ReflectionPad1d
Description: Test ReflectionPad1d with 3D input.
Expectation: success
"""
context.set_context(mode=mode)
x = Tensor(np.array([[[0, 1, 2, 3], [4, 5, 6, 7]]]).astype(np.float32))
padding = (3, 1)
net = nn.ReflectionPad1d(padding)
output = net(x)
expected_output = Tensor(np.array([[[3, 2, 1, 0, 1, 2, 3, 2],
[7, 6, 5, 4, 5, 6, 7, 6]]]).astype(np.float32))
assert np.array_equal(output.asnumpy(), expected_output)
padding = 2
expected_output = Tensor(np.array([[[2, 1, 0, 1, 2, 3, 2, 1],
[6, 5, 4, 5, 6, 7, 6, 5]]]).astype(np.float32))
net = nn.ReflectionPad1d(padding)
output = net(x)
assert np.array_equal(output.asnumpy(), expected_output)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_reflection_pad1d_input2d(mode):
"""
Feature: ReflectionPad1d
Description: Test ReflectionPad1d with 2D input.
Expectation: success
"""
context.set_context(mode=mode)
x = Tensor(np.array([[0, 1, 2, 3], [4, 5, 6, 7]]).astype(np.float32))
padding = (3, 1)
net = nn.ReflectionPad1d(padding)
output = net(x)
expected_output = Tensor(np.array([[3, 2, 1, 0, 1, 2, 3, 2],
[7, 6, 5, 4, 5, 6, 7, 6]]).astype(np.float32))
assert np.array_equal(output.asnumpy(), expected_output)
padding = 2
expected_output = Tensor(np.array([[2, 1, 0, 1, 2, 3, 2, 1],
[6, 5, 4, 5, 6, 7, 6, 5]]).astype(np.float32))
net = nn.ReflectionPad1d(padding)
output = net(x)
assert np.array_equal(output.asnumpy(), expected_output)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_reflection_pad2d_input4d(mode):
r"""
Feature: ReflectionPad2d
Description: Test ReflectionPad2d with 4D input.
Expectation: success
"""
context.set_context(mode=mode)
x = Tensor(np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]]]]).astype(np.float32))
padding = (1, 1, 2, 0)
net = nn.ReflectionPad2d(padding)
output = net(x)
expected_output = Tensor(np.array([[[[7, 6, 7, 8, 7], [4, 3, 4, 5, 4], [1, 0, 1, 2, 1],
[4, 3, 4, 5, 4], [7, 6, 7, 8, 7]]]]).astype(np.float32))
assert np.array_equal(output.asnumpy(), expected_output)
padding = 2
output = nn.ReflectionPad2d(padding)(x)
expected_output = Tensor(np.array([[[[8, 7, 6, 7, 8, 7, 6], [5, 4, 3, 4, 5, 4, 3],
[2, 1, 0, 1, 2, 1, 0], [5, 4, 3, 4, 5, 4, 3],
[8, 7, 6, 7, 8, 7, 6], [5, 4, 3, 4, 5, 4, 3],
[2, 1, 0, 1, 2, 1, 0]]]]).astype(np.float32))
assert np.array_equal(output.asnumpy(), expected_output)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_reflection_pad2d_input3d(mode):
r"""
Feature: ReflectionPad2d
Description: Test ReflectionPad2d with 3D input.
Expectation: success
"""
context.set_context(mode=mode)
x = Tensor(np.array([[[0, 1, 2], [3, 4, 5], [6, 7, 8]]]).astype(np.float32))
padding = (1, 1, 2, 0)
net = nn.ReflectionPad2d(padding)
output = net(x)
expected_output = Tensor(np.array([[[7, 6, 7, 8, 7], [4, 3, 4, 5, 4], [1, 0, 1, 2, 1],
[4, 3, 4, 5, 4], [7, 6, 7, 8, 7]]]).astype(np.float32))
print(output, expected_output)
padding = 2
output = nn.ReflectionPad2d(padding)(x)
expected_output = Tensor(np.array([[[8, 7, 6, 7, 8, 7, 6], [5, 4, 3, 4, 5, 4, 3],
[2, 1, 0, 1, 2, 1, 0], [5, 4, 3, 4, 5, 4, 3],
[8, 7, 6, 7, 8, 7, 6], [5, 4, 3, 4, 5, 4, 3],
[2, 1, 0, 1, 2, 1, 0]]]).astype(np.float32))
assert np.array_equal(output.asnumpy(), expected_output)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_reflection_pad_3d(mode):
"""
Feature: ReflectionPad3d
Description: Infer process of ReflectionPad3d with three type parameters.
Expectation: success
"""
context.set_context(mode=mode)
arr = np.arange(8).astype(np.float32).reshape((1, 2, 2, 2))
x = Tensor(arr)
padding = (1, 1, 1, 0, 0, 1)
net3d = nn.ReflectionPad3d(padding)
output = net3d(x)
expected_output = Tensor(np.array([[[[3, 2, 3, 2], [1, 0, 1, 0], [3, 2, 3, 2]],
[[7, 6, 7, 6], [5, 4, 5, 4], [7, 6, 7, 6]],
[[3, 2, 3, 2], [1, 0, 1, 0], [3, 2, 3, 2]]]]).astype(np.float32))
assert np.array_equal(output.asnumpy(), expected_output)
padding = 1
output = nn.ReflectionPad3d(padding)(x)
expected_output = Tensor(np.array([[[[7., 6., 7., 6.], [5., 4., 5., 4.],
[7., 6., 7., 6.], [5., 4., 5., 4.]],
[[3., 2., 3., 2.], [1., 0., 1., 0.],
[3., 2., 3., 2.], [1., 0., 1., 0.]],
[[7., 6., 7., 6.], [5., 4., 5., 4.],
[7., 6., 7., 6.], [5., 4., 5., 4.]],
[[3., 2., 3., 2.], [1., 0., 1., 0.],
[3., 2., 3., 2.], [1., 0., 1., 0.]]]]).astype(np.float32))
assert np.array_equal(output.asnumpy(), expected_output)