mindspore/tests/st/pynative/test_graph_param_transform.py

202 lines
6.7 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
from mindspore import RowTensor
from mindspore import context, nn, Tensor, ParameterTuple
from mindspore.common import dtype as mstype
from mindspore.common import ms_function
from mindspore.ops import operations as P
from mindspore.ops import composite as C
def setup_module():
context.set_context(mode=context.PYNATIVE_MODE, enable_sparse=False)
class _Grad(nn.Cell):
def __init__(self, grad, network, wrt_params=False, real_inputs_count=None):
super().__init__()
self.network = network
self.grad = grad
self.sens_param = self.grad.sens_param
self.wrt_params = wrt_params
self.real_inputs_count = real_inputs_count
if self.wrt_params:
self.params = ParameterTuple(self.network.trainable_params())
def construct(self, *inputs):
if self.wrt_params:
if self.real_inputs_count is None or self.sens_param is False:
return self.grad(self.network, self.params)(*inputs)
real_inputs = inputs[:self.real_inputs_count]
sense_param_inputs = inputs[self.real_inputs_count:]
return self.grad(self.network, self.params)(*real_inputs, sense_param_inputs)
if self.real_inputs_count is None or self.sens_param is False:
return self.grad(self.network)(*inputs)
real_inputs = inputs[:self.real_inputs_count]
sense_param_inputs = inputs[self.real_inputs_count:]
return self.grad(self.network)(*real_inputs, sense_param_inputs)
class GradOfFirstInput(_Grad):
"""
get grad of first input
"""
def __init__(self, network, sens_param=True, real_inputs_count=None):
super().__init__(grad=C.GradOperation(sens_param=sens_param),
network=network, real_inputs_count=real_inputs_count)
class GradOfAllInputs(_Grad):
"""
get grad of first input
"""
def __init__(self, network, sens_param=True, real_inputs_count=None):
super().__init__(grad=C.GradOperation(get_all=True, sens_param=sens_param),
network=network, real_inputs_count=real_inputs_count)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_row_tensor_in_while():
class RowTensorValuesDouble(nn.Cell):
def construct(self, x):
indices = x.indices
values = x.values * 2
dense_shape = x.dense_shape
return RowTensor(indices, values, dense_shape)
class RowTensorValuesAdd2(nn.Cell):
def construct(self, x):
indices = x.indices
values = x.values + 2
dense_shape = x.dense_shape
return RowTensor(indices, values, dense_shape)
class RowTensorWithControlWhile(nn.Cell):
def __init__(self, dense_shape):
super().__init__()
self.op1 = RowTensorValuesDouble()
self.op2 = RowTensorValuesAdd2()
self.dense_shape = dense_shape
@ms_function
def construct(self, a, b, indices, values):
x = RowTensor(indices, values, self.dense_shape)
x = self.op2(x)
while a > b:
x = self.op1(x)
b = b + 1
return x.indices, x.values, x.dense_shape
a = Tensor(np.array(3).astype(np.int32))
b = Tensor(np.array(0).astype(np.int32))
indices = Tensor(np.array([0, 2]).astype(np.int32))
values = Tensor(np.ones([2, 2]).astype(np.float32))
dense_shape = (5, 2)
net = RowTensorWithControlWhile(dense_shape)
out = net(a, b, indices, values)
assert np.allclose(indices.asnumpy(), out[0].asnumpy(), .0, .0)
assert np.allclose(values.asnumpy()*24, out[1].asnumpy(), .0, .0)
assert dense_shape == out[2]
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_parser_switch_layer_inputs_tuple():
class Add(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Add()
def construct(self, x):
y = self.op(x[0], x[1])
return self.op(x[0], y)
class Mul(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Mul()
def construct(self, x):
y = self.op(x[0], x[1])
return self.op(x[0], y)
class MulTwoInput(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Mul()
@ms_function
def construct(self, x, y):
y = self.op(x, y)
return self.op(x, y)
class TwoInputTupleFinalNet(nn.Cell):
def __init__(self, funcs):
super().__init__()
self.funcs = funcs
@ms_function
def construct(self, i, inputa, inputb):
inputs = (inputa, inputb)
x = self.funcs[i](inputs)
return x
func1 = Add()
func2 = Mul()
funcs = (func1, func2)
net = TwoInputTupleFinalNet(funcs)
input_data = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
input2 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
i = Tensor(1, mstype.int32)
netout = net(i, input_data, input2)
net_good = MulTwoInput()
goodout = net_good(input_data, input2)
assert np.allclose(goodout.asnumpy(), netout.asnumpy(), 0, 0)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_imagenet():
class ImageGradients(nn.Cell):
def __init__(self):
super().__init__()
self.imagegradients = nn.ImageGradients()
def construct(self, inputs):
return self.imagegradients(inputs)
net = ImageGradients()
net_me = GradOfFirstInput(net, real_inputs_count=1)
net_me.set_train()
input_data = Tensor(np.ones([32, 16, 8, 8]), dtype=mstype.float32)
output_grad = (Tensor(np.ones([32, 16, 8, 8]), dtype=mstype.float32),
Tensor(np.ones([32, 16, 8, 8]), dtype=mstype.float32))
net_me(input_data, *output_grad)