forked from mindspore-Ecosystem/mindspore
167 lines
5.4 KiB
Python
167 lines
5.4 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
The VAE interface can be called to construct VAE-GAN network.
|
|
"""
|
|
import os
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.vision.c_transforms as CV
|
|
import mindspore.nn as nn
|
|
from mindspore import context
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import composite as C
|
|
from mindspore.nn.probability.dpn import VAE
|
|
from mindspore.nn.probability.infer import ELBO, SVI
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU")
|
|
IMAGE_SHAPE = (-1, 1, 32, 32)
|
|
image_path = os.path.join('/home/workspace/mindspore_dataset/mnist', "train")
|
|
|
|
|
|
class Encoder(nn.Cell):
|
|
def __init__(self):
|
|
super(Encoder, self).__init__()
|
|
self.fc1 = nn.Dense(1024, 400)
|
|
self.relu = nn.ReLU()
|
|
self.flatten = nn.Flatten()
|
|
|
|
def construct(self, x):
|
|
x = self.flatten(x)
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
return x
|
|
|
|
|
|
class Decoder(nn.Cell):
|
|
def __init__(self):
|
|
super(Decoder, self).__init__()
|
|
self.fc1 = nn.Dense(400, 1024)
|
|
self.relu = nn.ReLU()
|
|
self.sigmoid = nn.Sigmoid()
|
|
self.reshape = P.Reshape()
|
|
|
|
def construct(self, z):
|
|
z = self.fc1(z)
|
|
z = self.reshape(z, IMAGE_SHAPE)
|
|
z = self.sigmoid(z)
|
|
return z
|
|
|
|
|
|
class Discriminator(nn.Cell):
|
|
"""
|
|
The Discriminator of the GAN network.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(Discriminator, self).__init__()
|
|
self.fc1 = nn.Dense(1024, 400)
|
|
self.fc2 = nn.Dense(400, 720)
|
|
self.fc3 = nn.Dense(720, 1024)
|
|
self.relu = nn.ReLU()
|
|
self.sigmoid = nn.Sigmoid()
|
|
self.flatten = nn.Flatten()
|
|
|
|
def construct(self, x):
|
|
x = self.flatten(x)
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = self.fc2(x)
|
|
x = self.relu(x)
|
|
x = self.fc3(x)
|
|
x = self.sigmoid(x)
|
|
return x
|
|
|
|
|
|
class VaeGan(nn.Cell):
|
|
def __init__(self):
|
|
super(VaeGan, self).__init__()
|
|
self.E = Encoder()
|
|
self.G = Decoder()
|
|
self.D = Discriminator()
|
|
self.dense = nn.Dense(20, 400)
|
|
self.vae = VAE(self.E, self.G, 400, 20)
|
|
self.shape = P.Shape()
|
|
self.normal = C.normal
|
|
self.to_tensor = P.ScalarToArray()
|
|
|
|
def construct(self, x):
|
|
recon_x, x, mu, std = self.vae(x)
|
|
z_p = self.normal(self.shape(mu), self.to_tensor(0.0), self.to_tensor(1.0), seed=0)
|
|
z_p = self.dense(z_p)
|
|
x_p = self.G(z_p)
|
|
ld_real = self.D(x)
|
|
ld_fake = self.D(recon_x)
|
|
ld_p = self.D(x_p)
|
|
return ld_real, ld_fake, ld_p, recon_x, x, mu, std
|
|
|
|
|
|
class VaeGanLoss(ELBO):
|
|
def __init__(self):
|
|
super(VaeGanLoss, self).__init__()
|
|
self.zeros = P.ZerosLike()
|
|
self.mse = nn.MSELoss(reduction='sum')
|
|
|
|
def construct(self, data, label):
|
|
ld_real, ld_fake, ld_p, recon_x, x, mu, std = data
|
|
y_real = self.zeros(ld_real) + 1
|
|
y_fake = self.zeros(ld_fake)
|
|
loss_D = self.mse(ld_real, y_real)
|
|
loss_GD = self.mse(ld_p, y_fake)
|
|
loss_G = self.mse(ld_fake, y_real)
|
|
reconstruct_loss = self.recon_loss(x, recon_x)
|
|
kl_loss = self.posterior('kl_loss', 'Normal', self.zeros(mu), self.zeros(mu) + 1, mu, std)
|
|
elbo_loss = reconstruct_loss + self.sum(kl_loss)
|
|
return loss_D + loss_G + loss_GD + elbo_loss
|
|
|
|
|
|
def create_dataset(data_path, batch_size=32, repeat_size=1,
|
|
num_parallel_workers=1):
|
|
"""
|
|
create dataset for train or test
|
|
"""
|
|
# define dataset
|
|
mnist_ds = ds.MnistDataset(data_path)
|
|
|
|
resize_height, resize_width = 32, 32
|
|
rescale = 1.0 / 255.0
|
|
shift = 0.0
|
|
|
|
# define map operations
|
|
resize_op = CV.Resize((resize_height, resize_width)) # Bilinear mode
|
|
rescale_op = CV.Rescale(rescale, shift)
|
|
hwc2chw_op = CV.HWC2CHW()
|
|
|
|
# apply map operations on images
|
|
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
# apply DatasetOps
|
|
mnist_ds = mnist_ds.batch(batch_size)
|
|
mnist_ds = mnist_ds.repeat(repeat_size)
|
|
|
|
return mnist_ds
|
|
|
|
|
|
def test_vae_gan():
|
|
vae_gan = VaeGan()
|
|
net_loss = VaeGanLoss()
|
|
optimizer = nn.Adam(params=vae_gan.trainable_params(), learning_rate=0.001)
|
|
ds_train = create_dataset(image_path, 128, 1)
|
|
net_with_loss = nn.WithLossCell(vae_gan, net_loss)
|
|
vi = SVI(net_with_loss=net_with_loss, optimizer=optimizer)
|
|
vae_gan = vi.run(train_dataset=ds_train, epochs=5)
|