forked from mindspore-Ecosystem/mindspore
77 lines
2.8 KiB
Python
77 lines
2.8 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test gnn aggregator."""
|
|
import numpy as np
|
|
from aggregator import MeanAggregator, AttentionHead, AttentionAggregator
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
import mindspore.ops.composite as C
|
|
from mindspore import Tensor
|
|
from mindspore.common.api import _cell_graph_executor
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
|
|
|
|
|
|
class MeanAggregatorGrad(nn.Cell):
|
|
"""Backward of MeanAggregator"""
|
|
|
|
def __init__(self, network):
|
|
super(MeanAggregatorGrad, self).__init__()
|
|
self.grad_op = grad_all_with_sens
|
|
self.network = network
|
|
|
|
def construct(self, x, sens):
|
|
grad_op = self.grad_op(self.network)(x, sens)
|
|
return grad_op
|
|
|
|
|
|
def test_MeanAggregator():
|
|
"""Compile MeanAggregator forward graph"""
|
|
aggregator = MeanAggregator(32, 64, activation="relu", dropout_ratio=0.5)
|
|
input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtype=np.float32))
|
|
_cell_graph_executor.compile(aggregator, input_data)
|
|
|
|
|
|
def test_MeanAggregator_grad():
|
|
"""Compile MeanAggregator backward graph"""
|
|
aggregator = MeanAggregator(32, 64, activation="relu", dropout_ratio=0.5)
|
|
input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtype=np.float32))
|
|
sens = Tensor(np.ones([32, 64]).astype(np.float32))
|
|
grad_op = MeanAggregatorGrad(aggregator)
|
|
_cell_graph_executor.compile(grad_op, input_data, sens)
|
|
|
|
|
|
def test_AttentionHead():
|
|
"""Compile AttentionHead forward graph"""
|
|
head = AttentionHead(1433,
|
|
8,
|
|
in_drop_ratio=0.6,
|
|
coef_drop_ratio=0.6,
|
|
residual=False)
|
|
input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
|
|
biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
|
|
_cell_graph_executor.compile(head, input_data, biases)
|
|
|
|
|
|
def test_AttentionAggregator():
|
|
input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
|
|
biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
|
|
net = AttentionAggregator(1433, 8, 8)
|
|
_cell_graph_executor.compile(net, input_data, biases)
|