forked from mindspore-Ecosystem/mindspore
73 lines
2.1 KiB
Python
73 lines
2.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
test assign sub
|
|
"""
|
|
import numpy as np
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
import mindspore.ops.operations as P
|
|
from mindspore import Tensor
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.common.parameter import Parameter
|
|
import mindspore as ms
|
|
|
|
class AssignW(nn.Cell):
|
|
def __init__(self):
|
|
super(AssignW, self).__init__()
|
|
self.assign = P.Assign()
|
|
|
|
def construct(self, x, w):
|
|
self.assign(x, w)
|
|
return x
|
|
|
|
|
|
class AssignOp(nn.Cell):
|
|
def __init__(self):
|
|
super(AssignOp, self).__init__()
|
|
self.b = Parameter(initializer('ones', [5]), name='b')
|
|
|
|
|
|
def construct(self, w):
|
|
self.b = w
|
|
return w
|
|
|
|
|
|
def test_assign_by_operator():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net = AssignOp()
|
|
net.to_float(ms.float16)
|
|
input_data = Tensor(np.ones([5]).astype(np.float32))
|
|
net(input_data)
|
|
|
|
|
|
class NetScatterNdUpdate(nn.Cell):
|
|
def __init__(self):
|
|
super(NetScatterNdUpdate, self).__init__()
|
|
self.b = Parameter(initializer('ones', [5, 5]), name='b')
|
|
self.scatter = P.ScatterNdUpdate()
|
|
|
|
def construct(self, idx, x):
|
|
return self.scatter(self.b, idx, x)
|
|
|
|
|
|
def test_scatter_nd_update():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net = NetScatterNdUpdate()
|
|
x = Tensor(np.ones([5]).astype(np.float16))
|
|
idx = Tensor(np.ones([1]).astype(np.int32))
|
|
net(idx, x)
|