forked from mindspore-Ecosystem/mindspore
97 lines
2.7 KiB
Python
97 lines
2.7 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test layer switch"""
|
|
import numpy as np
|
|
|
|
import mindspore
|
|
from mindspore import nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class Layer1(nn.Cell):
|
|
def __init__(self):
|
|
super(Layer1, self).__init__()
|
|
self.net = nn.Conv2d(3, 1, 3, pad_mode='same')
|
|
self.pad = nn.Pad(
|
|
paddings=((0, 0), (0, 2), (0, 0), (0, 0)), mode="CONSTANT")
|
|
|
|
def construct(self, x):
|
|
y = self.net(x)
|
|
return self.pad(y)
|
|
|
|
|
|
class Layer2(nn.Cell):
|
|
def __init__(self):
|
|
super(Layer2, self).__init__()
|
|
self.net = nn.Conv2d(3, 1, 7, pad_mode='same')
|
|
self.pad = nn.Pad(
|
|
paddings=((0, 0), (0, 2), (0, 0), (0, 0)), mode="CONSTANT")
|
|
|
|
def construct(self, x):
|
|
y = self.net(x)
|
|
return self.pad(y)
|
|
|
|
|
|
class Layer3(nn.Cell):
|
|
def __init__(self):
|
|
super(Layer3, self).__init__()
|
|
self.net = nn.Conv2d(3, 3, 3, pad_mode='same')
|
|
|
|
def construct(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class SwitchNet(nn.Cell):
|
|
def __init__(self):
|
|
super(SwitchNet, self).__init__()
|
|
self.layer1 = Layer1()
|
|
self.layer2 = Layer2()
|
|
self.layer3 = Layer3()
|
|
self.layers = (self.layer1, self.layer2, self.layer3)
|
|
self.fill = P.Fill()
|
|
|
|
def construct(self, x, index):
|
|
y = self.layers[index](x)
|
|
return y
|
|
|
|
|
|
class MySwitchNet(nn.Cell):
|
|
def __init__(self):
|
|
super(MySwitchNet, self).__init__()
|
|
self.layer1 = Layer1()
|
|
self.layer2 = Layer2()
|
|
self.layer3 = Layer3()
|
|
self.layers = (self.layer1, self.layer2, self.layer3)
|
|
self.fill = P.Fill()
|
|
|
|
def construct(self, x, index):
|
|
y = self.layers[0](x)
|
|
for i in range(len(self.layers)):
|
|
if i == index:
|
|
y = self.layers[i](x)
|
|
return y
|
|
|
|
|
|
def test_layer_switch():
|
|
net = MySwitchNet()
|
|
x = Tensor(np.ones((3, 3, 24, 24)), mindspore.float32)
|
|
index = Tensor(0, dtype=mindspore.int32)
|
|
net(x, index)
|