forked from mindspore-Ecosystem/mindspore
81 lines
2.4 KiB
Python
81 lines
2.4 KiB
Python
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class NetParallelConcat(nn.Cell):
|
|
|
|
def __init__(self):
|
|
super(NetParallelConcat, self).__init__()
|
|
self.parallelconcat = P.ParallelConcat()
|
|
|
|
def construct(self, x):
|
|
return self.parallelconcat(x)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_parallelconcat_1d():
|
|
"""
|
|
Feature: ParallelConcat TEST.
|
|
Description: 1d test case for ParallelConcat
|
|
Expectation: the result match to numpy
|
|
"""
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
x_np = (np.array([[3]])).astype(np.int8)
|
|
y_np = (np.array([[5]])).astype(np.int8)
|
|
z_np = np.concatenate([x_np, y_np], axis=0)
|
|
|
|
x_ms = Tensor(x_np)
|
|
y_ms = Tensor(y_np)
|
|
net = NetParallelConcat()
|
|
z_ms = net([x_ms, y_ms])
|
|
|
|
assert np.allclose(z_np, z_ms.asnumpy())
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_parallelconcat_2d():
|
|
"""
|
|
Feature: ParallelConcat TEST.
|
|
Description: 2d test case for ParallelConcat
|
|
Expectation: the result match to numpy
|
|
"""
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
x_np = (np.array([[-1, -5, -3, -14, 64]])).astype(np.int8)
|
|
y_np = (np.array([[5, 0, 7, 11, 66]])).astype(np.int8)
|
|
z_np = np.concatenate([x_np, y_np], axis=0)
|
|
|
|
x_ms = Tensor(x_np)
|
|
y_ms = Tensor(y_np)
|
|
net = NetParallelConcat()
|
|
z_ms = net([x_ms, y_ms])
|
|
|
|
assert np.allclose(z_np, z_ms.asnumpy())
|