forked from mindspore-Ecosystem/mindspore
61 lines
2.1 KiB
Python
61 lines
2.1 KiB
Python
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
import mindspore.ops as ops
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def construct(self, x):
|
|
out = ops.lp_pool1d(x, norm_type=1, kernel_size=3, stride=1)
|
|
return out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.platform_arm_cpu
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
|
def test_lppool1d_normal(mode):
|
|
"""
|
|
Feature: LPPool1d
|
|
Description: Verify the result of LPPool1d
|
|
Expectation: success
|
|
"""
|
|
ms.set_context(mode=mode)
|
|
net = Net()
|
|
x = ms.Tensor(np.arange(2 * 3 * 4).reshape((2, 3, 4)), dtype=ms.float32)
|
|
y = ms.Tensor(np.arange(3 * 4).reshape((3, 4)), dtype=ms.float32)
|
|
out = net(x)
|
|
out2 = net(y)
|
|
expect_out = np.array([[[3., 6.],
|
|
[15., 18.],
|
|
[27., 30.]],
|
|
[[39., 42.],
|
|
[51., 54.],
|
|
[63., 66.]]])
|
|
expect_out2 = np.array([[3., 6.],
|
|
[15., 18.],
|
|
[27., 30.]])
|
|
assert np.allclose(out.asnumpy(), expect_out)
|
|
assert np.allclose(out2.asnumpy(), expect_out2)
|