mindspore/tests/st/dynamic_shape/test_scatter_nd.py

113 lines
3.7 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore import Tensor
from mindspore.ops import operations as P
class NetDynInput(nn.Cell):
def __init__(self, shape):
super(NetDynInput, self).__init__()
self.scatternd = P.ScatterNd()
self.shape = shape
def construct(self, indices, update):
return self.scatternd(indices, update, self.shape)
class NetDynShape(nn.Cell):
def __init__(self):
super(NetDynShape, self).__init__()
self.scatternd = P.ScatterNd()
self.shape_op = P.TensorShape()
def construct(self, indices, update, prev_out):
shape = self.shape_op(prev_out)
return self.scatternd(indices, update, shape)
def check_result(output, expect):
error = np.ones(shape=output.shape) * 1.0e-6
diff = output - expect
assert np.all(diff < error)
assert np.all(-diff < error)
def case_dyn_input():
indices = np.array(
[[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int32)
update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(np.float32)
shape = (2, 2)
expect = np.array([[0., 5.3],
[0., 1.1]]).astype(np.float32)
net = NetDynInput(shape)
indices_dyn = Tensor(shape=[None, 2], dtype=mstype.int32)
update_dyn = Tensor(shape=[None], dtype=mstype.float32)
net.set_inputs(indices_dyn, update_dyn)
output = net(Tensor(indices), Tensor(update)).asnumpy()
check_result(output, expect)
def case_dyn_shape():
indices = np.array(
[[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int32)
update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(np.float32)
prev_out = np.array([[1, 1],
[1, 1]]).astype(np.int32)
expect = np.array([[0., 5.3],
[0., 1.1]]).astype(np.float32)
net = NetDynShape()
prev_out_dyn = Tensor(shape=[None, 2], dtype=mstype.int32)
net.set_inputs(Tensor(indices), Tensor(update), prev_out_dyn)
output = net(Tensor(indices), Tensor(update), Tensor(prev_out)).asnumpy()
check_result(output, expect)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_dynamic_scatternd_dyn_input():
"""
Feature: dynamic shape for ScatterNd
Description: dynamic input shape for ScatterNd
Expectation: success
"""
context.set_context(mode=context.GRAPH_MODE)
case_dyn_input()
context.set_context(mode=context.PYNATIVE_MODE)
case_dyn_input()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dynamic_scatternd_dyn_shape():
"""
Feature: dynamic shape for ScatterNd
Description: dynamic output shape for ScatterNd when shape is a tensor
Expectation: success
"""
context.set_context(mode=context.GRAPH_MODE)
case_dyn_shape()
context.set_context(mode=context.PYNATIVE_MODE)
case_dyn_shape()