forked from mindspore-Ecosystem/mindspore
113 lines
3.7 KiB
Python
113 lines
3.7 KiB
Python
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class NetDynInput(nn.Cell):
|
|
def __init__(self, shape):
|
|
super(NetDynInput, self).__init__()
|
|
self.scatternd = P.ScatterNd()
|
|
self.shape = shape
|
|
|
|
def construct(self, indices, update):
|
|
return self.scatternd(indices, update, self.shape)
|
|
|
|
|
|
class NetDynShape(nn.Cell):
|
|
def __init__(self):
|
|
super(NetDynShape, self).__init__()
|
|
self.scatternd = P.ScatterNd()
|
|
self.shape_op = P.TensorShape()
|
|
|
|
def construct(self, indices, update, prev_out):
|
|
shape = self.shape_op(prev_out)
|
|
return self.scatternd(indices, update, shape)
|
|
|
|
|
|
def check_result(output, expect):
|
|
error = np.ones(shape=output.shape) * 1.0e-6
|
|
diff = output - expect
|
|
assert np.all(diff < error)
|
|
assert np.all(-diff < error)
|
|
|
|
|
|
def case_dyn_input():
|
|
indices = np.array(
|
|
[[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int32)
|
|
update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(np.float32)
|
|
shape = (2, 2)
|
|
expect = np.array([[0., 5.3],
|
|
[0., 1.1]]).astype(np.float32)
|
|
net = NetDynInput(shape)
|
|
indices_dyn = Tensor(shape=[None, 2], dtype=mstype.int32)
|
|
update_dyn = Tensor(shape=[None], dtype=mstype.float32)
|
|
net.set_inputs(indices_dyn, update_dyn)
|
|
output = net(Tensor(indices), Tensor(update)).asnumpy()
|
|
check_result(output, expect)
|
|
|
|
|
|
def case_dyn_shape():
|
|
indices = np.array(
|
|
[[0, 1], [1, 1], [0, 1], [0, 1], [0, 1]]).astype(np.int32)
|
|
update = np.array([3.2, 1.1, 5.3, -2.2, -1.0]).astype(np.float32)
|
|
prev_out = np.array([[1, 1],
|
|
[1, 1]]).astype(np.int32)
|
|
expect = np.array([[0., 5.3],
|
|
[0., 1.1]]).astype(np.float32)
|
|
net = NetDynShape()
|
|
prev_out_dyn = Tensor(shape=[None, 2], dtype=mstype.int32)
|
|
net.set_inputs(Tensor(indices), Tensor(update), prev_out_dyn)
|
|
output = net(Tensor(indices), Tensor(update), Tensor(prev_out)).asnumpy()
|
|
check_result(output, expect)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_dynamic_scatternd_dyn_input():
|
|
"""
|
|
Feature: dynamic shape for ScatterNd
|
|
Description: dynamic input shape for ScatterNd
|
|
Expectation: success
|
|
"""
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
case_dyn_input()
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
case_dyn_input()
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_dynamic_scatternd_dyn_shape():
|
|
"""
|
|
Feature: dynamic shape for ScatterNd
|
|
Description: dynamic output shape for ScatterNd when shape is a tensor
|
|
Expectation: success
|
|
"""
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
case_dyn_shape()
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
case_dyn_shape()
|