7.0 KiB
MindSpore Release Notes
MindSpore 1.7.0 Release Notes
主要特性和增强
OS
- [STABLE] 支持Python 3.8版本(Linux/Windows/Mac)。
- [STABLE] 简化安装,提供详细安装指南和自动化安装脚本。
- [STABLE] Windows版本支持算子多线程。
- [STABLE] GCC兼容7.3到9.x版本。
FrontEnd
- [STABLE] 优化器支持动态权重衰减,即训练期间权重衰减值随着step的增加而变化。
- [STABLE] 增加四种创建Tensor的方法,分别是
mindspore.numpy.rand()
、mindspore.numpy.randn()
、mindspore.numpy.randint()
和mindspore.ops.arange ()
。 - [STABLE] 增加一种callback方法
mindspore.train.callback.History
。 - [BETA] 自定义算子支持Julia算子。
- [STABLE] 通过
mindspore.ms_class
类装饰器,支持获取用户自定义类的属性和方法。 - [STABLE] 支持同时存在副作用算子和控制流语句的网络的训练。
- [STABLE] 支持更复杂的控制流语法,比如在while的循环体里使用for语句。
- [STABLE] 通过减少子图数量,提升包含复杂控制流语法的网络的性能。
PyNative
- [STABLE] 在PyNative模式下支持hook函数功能,包括前向hook接口register_forward_pre_hook、register_forward_hook和反向hook接口register_backward_hook。
- [STABLE] 优化PyNative模式执行性能,并行执行前端Python与后端C++。
Auto Parallel
- [STABLE] 在MoE场景中支持TopK的路由、数据并行和优化器切分。
- [STABLE] 支持AllGather/ReduceScatter通信算子融合,在DATA_PARALLEL模式支持AllReduce按数据量大小编译。
- [STABLE] 在并行模式下支持ops.clip_by_global_norm。
- [STABLE] 在并行模式下支持AdaSum优化器。
- [STABLE] 支持自动优化器切分。
- [STABLE] 支持AlltoAll可配置开启,支持自动插入VirtualDatasetCell。
- [STABLE] 在流水线并行训练中,支持自动推断可训练的参数。
- [STABLE] 支持集群的设备数目不为2的幂次方。
- [STABLE] 在自动并行模式中支持策略传播。
- [STABLE] 在统一运行时中支持异构训练。
- [STABLE] 支持CPU的Adafactor算子。
- [STABLE] 支持Conv2d/Conv2D的H/W轴切分和Transpose算子。支持ResizeBilinear、ROIAlign、CropAndResize、BoundingBoxEncode、IOU和RandomChoiceWithMask等分布式算子。
Executor
- [BETA] 数据并行训练容灾 支持多卡数据并行训练容灾恢复。
- [BETA] 支持在CPU下的线程数搜索,获取最优线程数来执行。整个搜索过程需要耗时50个steps,整体的性能会在50个steps后达到稳定的状态。在测试性能的时候,需要以50个steps之后的数据作为标准。
DataSet
- [STABLE] 增加了数据处理API的差异文档,比较TensorFlow.data与MindSpore.dataset部分算子的差异,详见 对比文档。
- [STABLE] Python多进程逻辑优化,保证不同异常场景的正常退出。
- [STABLE] 支持自动数据加速,可以自适应调节数据处理管道的执行速度。
- [BETA] 数据处理异构加速 支持了新的数据增强操作: RandomColorAdjust、RandomSharpness和TypeCast。
- GeneratorDataset加载自定义数据集时,当
__getitem__/__next__
方法返回单个NumPy对象,对应会输出单个数据列。 - 用户在数据预处理中使用过多的进程数/线程数情况下,会出现错误RuntimeError: can't start new thread,可以通过
ulimit -u 10240
增加当前用户可用的线程/进程数解决。
API变更
非兼容性变更
Python API
- 修改register_backward_hook功能对应hook的梯度返回值类型,将梯度返回值统一改成tuple类型。(!31876)
- 弃用的import用法:
import mindspore.dataset.engine.datasets as ds
,因其import目录过深且过度依赖Python目录结构。推荐使用import mindspore.dataset as ds
,更多参考详见 API文档。 - 新增
mindspore.ms_class
接口,作为用户自定义类的类装饰器,使得MindSpore能够识别用户自定义类,并且获取这些类的属性和方法。(!30855) mindspore.SparseTensor
接口废弃使用,对应新接口为mindspore.COOTensor
。 (!28505)- Tensor新增一个入参
internal
,作为框架内部使用。
MindSpore Lite
主要特性和增强
后量化
- [STABLE] 后量化支持动态量化算法。
- [BETA] 后量化模型支持在英伟达GPU上执行推理。
贡献者
感谢以下人员做出的贡献:
AGroupofProbiotocs, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hesham, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jiabin Liu, jianghui58, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, liuyongqi, laiyongqiang, leonwanghui, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, lvchangquan, lvliang, lz, maning202007, Margaret_wangrui, mengyuanli, Ming_blue, ms_yan, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking.
欢迎以任何形式对项目提供贡献!