forked from mindspore-Ecosystem/mindspore
61 lines
2.2 KiB
Python
61 lines
2.2 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import pytest
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.vision.c_transforms as vision
|
|
from mindspore import log as logger
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def test_exception_01():
|
|
"""
|
|
Test single exception with invalid input
|
|
"""
|
|
logger.info("test_exception_01")
|
|
data = ds.TFRecordDataset(DATA_DIR, columns_list=["image"])
|
|
with pytest.raises(ValueError) as info:
|
|
data = data.map(input_columns=["image"], operations=vision.Resize(100, 100))
|
|
assert "Invalid interpolation mode." in str(info.value)
|
|
|
|
|
|
def test_exception_02():
|
|
"""
|
|
Test exceptions with invalid input, and test valid input
|
|
"""
|
|
logger.info("test_exception_02")
|
|
num_samples = -1
|
|
with pytest.raises(ValueError) as info:
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
|
|
assert "num_samples cannot be less than 0" in str(info.value)
|
|
|
|
num_samples = 1
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
|
|
data = data.map(input_columns=["image"], operations=vision.Decode())
|
|
data = data.map(input_columns=["image"], operations=vision.Resize((100, 100)))
|
|
# Confirm 1 sample in dataset
|
|
assert sum([1 for _ in data]) == 1
|
|
num_iters = 0
|
|
for _ in data.create_dict_iterator():
|
|
num_iters += 1
|
|
assert num_iters == 1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_exception_01()
|
|
test_exception_02()
|