mindspore/tests/ut/python/dataset/test_datasets_imagefolder.py

497 lines
16 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore.dataset as ds
from mindspore import log as logger
DATA_DIR = "../data/dataset/testPK/data"
def test_imagefolder_basic():
logger.info("Test Case basic")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDatasetV2(DATA_DIR)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_imagefolder_numsamples():
logger.info("Test Case numSamples")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_samples=10, num_parallel_workers=2)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 10
random_sampler = ds.RandomSampler(num_samples=3, replacement=True)
data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
num_iter = 0
for item in data1.create_dict_iterator():
num_iter += 1
assert num_iter == 3
random_sampler = ds.RandomSampler(num_samples=3, replacement=False)
data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
num_iter = 0
for item in data1.create_dict_iterator():
num_iter += 1
assert num_iter == 3
def test_imagefolder_numshards():
logger.info("Test Case numShards")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_shards=4, shard_id=3)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 11
def test_imagefolder_shardid():
logger.info("Test Case withShardID")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_shards=4, shard_id=1)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 11
def test_imagefolder_noshuffle():
logger.info("Test Case noShuffle")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDatasetV2(DATA_DIR, shuffle=False)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_imagefolder_extrashuffle():
logger.info("Test Case extraShuffle")
# define parameters
repeat_count = 2
# apply dataset operations
data1 = ds.ImageFolderDatasetV2(DATA_DIR, shuffle=True)
data1 = data1.shuffle(buffer_size=5)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 88
def test_imagefolder_classindex():
logger.info("Test Case classIndex")
# define parameters
repeat_count = 1
# apply dataset operations
class_index = {"class3": 333, "class1": 111}
data1 = ds.ImageFolderDatasetV2(DATA_DIR, class_indexing=class_index, shuffle=False)
data1 = data1.repeat(repeat_count)
golden = [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111,
333, 333, 333, 333, 333, 333, 333, 333, 333, 333, 333]
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
assert item["label"] == golden[num_iter]
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 22
def test_imagefolder_negative_classindex():
logger.info("Test Case negative classIndex")
# define parameters
repeat_count = 1
# apply dataset operations
class_index = {"class3": -333, "class1": 111}
data1 = ds.ImageFolderDatasetV2(DATA_DIR, class_indexing=class_index, shuffle=False)
data1 = data1.repeat(repeat_count)
golden = [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111,
-333, -333, -333, -333, -333, -333, -333, -333, -333, -333, -333]
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
assert item["label"] == golden[num_iter]
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 22
def test_imagefolder_extensions():
logger.info("Test Case extensions")
# define parameters
repeat_count = 1
# apply dataset operations
ext = [".jpg", ".JPEG"]
data1 = ds.ImageFolderDatasetV2(DATA_DIR, extensions=ext)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_imagefolder_decode():
logger.info("Test Case decode")
# define parameters
repeat_count = 1
# apply dataset operations
ext = [".jpg", ".JPEG"]
data1 = ds.ImageFolderDatasetV2(DATA_DIR, extensions=ext, decode=True)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_sequential_sampler():
logger.info("Test Case SequentialSampler")
golden = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
# define parameters
repeat_count = 1
# apply dataset operations
sampler = ds.SequentialSampler()
data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
result = []
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
result.append(item["label"])
num_iter += 1
logger.info("Result: {}".format(result))
assert result == golden
def test_random_sampler():
logger.info("Test Case RandomSampler")
# define parameters
repeat_count = 1
# apply dataset operations
sampler = ds.RandomSampler()
data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_distributed_sampler():
logger.info("Test Case DistributedSampler")
# define parameters
repeat_count = 1
# apply dataset operations
sampler = ds.DistributedSampler(10, 1)
data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 5
def test_pk_sampler():
logger.info("Test Case PKSampler")
# define parameters
repeat_count = 1
# apply dataset operations
sampler = ds.PKSampler(3)
data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 12
def test_subset_random_sampler():
logger.info("Test Case SubsetRandomSampler")
# define parameters
repeat_count = 1
# apply dataset operations
indices = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11]
sampler = ds.SubsetRandomSampler(indices)
data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 12
def test_weighted_random_sampler():
logger.info("Test Case WeightedRandomSampler")
# define parameters
repeat_count = 1
# apply dataset operations
weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 1.1]
sampler = ds.WeightedRandomSampler(weights, 11)
data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 11
def test_imagefolder_rename():
logger.info("Test Case rename")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_samples=10)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 10
data1 = data1.rename(input_columns=["image"], output_columns="image2")
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image2"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 10
def test_imagefolder_zip():
logger.info("Test Case zip")
# define parameters
repeat_count = 2
# apply dataset operations
data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_samples=10)
data2 = ds.ImageFolderDatasetV2(DATA_DIR, num_samples=10)
data1 = data1.repeat(repeat_count)
# rename dataset2 for no conflict
data2 = data2.rename(input_columns=["image", "label"], output_columns=["image1", "label1"])
data3 = ds.zip((data1, data2))
num_iter = 0
for item in data3.create_dict_iterator(): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 10
if __name__ == '__main__':
test_imagefolder_basic()
logger.info('test_imagefolder_basic Ended.\n')
test_imagefolder_numsamples()
logger.info('test_imagefolder_numsamples Ended.\n')
test_sequential_sampler()
logger.info('test_sequential_sampler Ended.\n')
test_random_sampler()
logger.info('test_random_sampler Ended.\n')
test_distributed_sampler()
logger.info('test_distributed_sampler Ended.\n')
test_pk_sampler()
logger.info('test_pk_sampler Ended.\n')
test_subset_random_sampler()
logger.info('test_subset_random_sampler Ended.\n')
test_weighted_random_sampler()
logger.info('test_weighted_random_sampler Ended.\n')
test_imagefolder_numshards()
logger.info('test_imagefolder_numshards Ended.\n')
test_imagefolder_shardid()
logger.info('test_imagefolder_shardid Ended.\n')
test_imagefolder_noshuffle()
logger.info('test_imagefolder_noshuffle Ended.\n')
test_imagefolder_extrashuffle()
logger.info('test_imagefolder_extrashuffle Ended.\n')
test_imagefolder_classindex()
logger.info('test_imagefolder_classindex Ended.\n')
test_imagefolder_negative_classindex()
logger.info('test_imagefolder_negative_classindex Ended.\n')
test_imagefolder_extensions()
logger.info('test_imagefolder_extensions Ended.\n')
test_imagefolder_decode()
logger.info('test_imagefolder_decode Ended.\n')
test_imagefolder_rename()
logger.info('test_imagefolder_rename Ended.\n')
test_imagefolder_zip()
logger.info('test_imagefolder_zip Ended.\n')