forked from mindspore-Ecosystem/mindspore
481 lines
14 KiB
Python
481 lines
14 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class Assign(nn.Cell):
|
|
def __init__(self, x, y):
|
|
super(Assign, self).__init__()
|
|
self.x = Parameter(initializer(x, x.shape), name="x")
|
|
self.y = Parameter(initializer(y, y.shape), name="y")
|
|
self.assign = P.Assign()
|
|
|
|
def construct(self):
|
|
self.assign(self.y, self.x)
|
|
return self.y
|
|
|
|
|
|
def test_assign_bool():
|
|
x = Tensor(np.ones([3, 3]).astype(np.bool_))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.bool_))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.bool_)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_int8():
|
|
x = Tensor(np.ones([3, 3]).astype(np.int8))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.int8))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.int8)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_uint8():
|
|
x = Tensor(np.ones([3, 3]).astype(np.uint8))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.uint8))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.uint8)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_int16():
|
|
x = Tensor(np.ones([3, 3]).astype(np.int16))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.int16))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.int16)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_uint16():
|
|
x = Tensor(np.ones([3, 3]).astype(np.uint16))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.uint16))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.uint16)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_int32():
|
|
x = Tensor(np.ones([3, 3]).astype(np.int32))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.int32))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.int32)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_uint32():
|
|
x = Tensor(np.ones([3, 3]).astype(np.uint32))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.uint32))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.uint32)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_int64():
|
|
x = Tensor(np.ones([3, 3]).astype(np.int64))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.int64))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.int64)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_uint64():
|
|
x = Tensor(np.ones([3, 3]).astype(np.uint64))
|
|
y = Tensor(np.zeros([3, 3]).astype(np.uint64))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.ones([3, 3]).astype(np.uint64)
|
|
print(output)
|
|
assert np.all(output == output_expect)
|
|
|
|
|
|
def test_assign_float16():
|
|
x = Tensor(np.array([[0.1, 0.2, 0.3],
|
|
[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8]]).astype(np.float16))
|
|
y = Tensor(np.array([[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8],
|
|
[0.1, 0.2, 0.3]]).astype(np.float16))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.array([[0.1, 0.2, 0.3],
|
|
[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8]]).astype(np.float16)
|
|
print(output)
|
|
assert np.all(output - output_expect < 1e-6)
|
|
|
|
|
|
def test_assign_float32():
|
|
x = Tensor(np.array([[0.1, 0.2, 0.3],
|
|
[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8]]).astype(np.float32))
|
|
y = Tensor(np.array([[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8],
|
|
[0.1, 0.2, 0.3]]).astype(np.float32))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.array([[0.1, 0.2, 0.3],
|
|
[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8]]).astype(np.float32)
|
|
print(output)
|
|
assert np.all(output - output_expect < 1e-6)
|
|
|
|
|
|
def test_assign_float64():
|
|
x = Tensor(np.array([[0.1, 0.2, 0.3],
|
|
[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8]]).astype(np.float64))
|
|
y = Tensor(np.array([[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8],
|
|
[0.1, 0.2, 0.3]]).astype(np.float64))
|
|
assign = Assign(x, y)
|
|
output = assign()
|
|
output = output.asnumpy()
|
|
output_expect = np.array([[0.1, 0.2, 0.3],
|
|
[0.4, 0.5, 0.5],
|
|
[0.6, 0.7, 0.8]]).astype(np.float64)
|
|
print(output)
|
|
assert np.all(output - output_expect < 1e-6)
|
|
|
|
|
|
class AssignAdd(nn.Cell):
|
|
def __init__(self, x, y):
|
|
super(AssignAdd, self).__init__()
|
|
self.x = Parameter(initializer(x, x.shape), name="x")
|
|
self.y = Parameter(initializer(y, y.shape), name="y")
|
|
self.assignadd = P.AssignAdd()
|
|
|
|
def construct(self):
|
|
self.assignadd(self.y, self.x)
|
|
return self.y
|
|
|
|
|
|
def test_number_assignadd_number():
|
|
input_x = 2
|
|
result1 = 5
|
|
result2 = 5
|
|
result1 += input_x
|
|
assignadd = AssignAdd(result2, input_x)
|
|
result2 = assignadd()
|
|
expect = 7
|
|
assert np.all(result1 == expect)
|
|
assert np.all(result2 == expect)
|
|
|
|
|
|
def test_tensor_assignadd_tensor():
|
|
input_x = Tensor(np.array([[2, 2], [3, 3]]))
|
|
result1 = Tensor(np.array([[4, -2], [2, 17]]))
|
|
result2 = Tensor(np.array([[4, -2], [2, 17]]))
|
|
result1 += input_x
|
|
result2 = AssignAdd(result2, input_x)()
|
|
expect = Tensor(np.array([[6, 0], [5, 20]]))
|
|
assert np.all(result1.asnumpy() == expect)
|
|
assert np.all(result2.asnumpy() == expect)
|
|
|
|
|
|
def test_tensor_assignadd_number():
|
|
input_x = 3
|
|
result1 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
|
|
result2 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
|
|
result1 += input_x
|
|
result2 = AssignAdd(result2, input_x)()
|
|
expect = Tensor(np.array([[7, 1], [5, 20]]))
|
|
assert np.all(result1.asnumpy() == expect)
|
|
assert np.all(result2.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assignadd_tensor():
|
|
result1 = 3
|
|
result2 = 3
|
|
input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
|
|
result1 += input_x
|
|
result2 = AssignAdd(result2, input_x)()
|
|
expect = Tensor(np.array([[7, 1], [5, 20]]))
|
|
assert np.all(result1.asnumpy() == expect)
|
|
assert np.all(result2.asnumpy() == expect)
|
|
|
|
|
|
def test_tuple_assignadd_tuple():
|
|
result1 = (1, 2, 3, 4)
|
|
result2 = (1, 2, 3, 4)
|
|
input_x = (2, 3, 4, 5, 6)
|
|
result1 += input_x
|
|
result2 = AssignAdd(result2, input_x)()
|
|
expect = (1, 2, 3, 4, 2, 3, 4, 5, 6)
|
|
assert np.all(result1.asnumpy() == expect)
|
|
assert np.all(result2.asnumpy() == expect)
|
|
|
|
|
|
def test_string_assignadd_string():
|
|
result1 = "string111"
|
|
result2 = "string111"
|
|
input_x = "string222"
|
|
result1 += input_x
|
|
result2 = AssignAdd(result2, input_x)()
|
|
expect = "string111string222"
|
|
assert result1 == expect
|
|
assert result2 == expect
|
|
|
|
|
|
class AssignSub(nn.Cell):
|
|
def __init__(self, x, y):
|
|
super(AssignSub, self).__init__()
|
|
self.x = Parameter(initializer(x, x.shape), name="x")
|
|
self.y = Parameter(initializer(y, y.shape), name="y")
|
|
self.assignsub = P.AssignSub()
|
|
|
|
def construct(self):
|
|
self.assignsub(self.y, self.x)
|
|
return self.y
|
|
|
|
|
|
def test_number_assignsub_number():
|
|
input_x = 2
|
|
result1 = 5
|
|
result2 = 5
|
|
result1 -= input_x
|
|
result2 = AssignSub(result2, input_x)()
|
|
expect = 3
|
|
assert np.all(result1 == expect)
|
|
assert np.all(result2 == expect)
|
|
|
|
|
|
def test_tensor_assignsub_tensor():
|
|
input_x = Tensor(np.array([[2, 2], [3, 3]]))
|
|
result1 = Tensor(np.array([[4, -2], [2, 17]]))
|
|
result2 = Tensor(np.array([[4, -2], [2, 17]]))
|
|
result1 -= input_x
|
|
result2 = AssignSub(result2, input_x)()
|
|
expect = Tensor(np.array([[2, -4], [-1, 14]]))
|
|
assert np.all(result1.asnumpy() == expect)
|
|
assert np.all(result2.asnumpy() == expect)
|
|
|
|
|
|
def test_tensor_assignsub_number():
|
|
input_x = 3
|
|
result1 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
|
|
result2 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
|
|
result1 -= input_x
|
|
result2 = AssignSub(result2, input_x)()
|
|
expect = Tensor(np.array([[1, -5], [-1, 14]]))
|
|
assert np.all(result1.asnumpy() == expect)
|
|
assert np.all(result2.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assignsub_tensor():
|
|
result1 = 3
|
|
result2 = 3
|
|
input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
|
|
result1 -= input_x
|
|
result2 = AssignSub(result2, input_x)()
|
|
expect = Tensor(np.array([[-1, 5], [1, -14]]))
|
|
assert np.all(result1.asnumpy() == expect)
|
|
assert np.all(result2.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assignmul_number():
|
|
input_x = 2
|
|
result = 5
|
|
result *= input_x
|
|
expect = 10
|
|
assert np.all(result == expect)
|
|
|
|
|
|
def test_tensor_assignmul_tensor():
|
|
input_x = Tensor(np.array([[2, 2], [3, 3]]))
|
|
result = Tensor(np.array([[4, -2], [2, 17]]))
|
|
result *= input_x
|
|
expect = Tensor(np.array([[8, -4], [6, 51]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_tensor_assignmul_number():
|
|
input_x = 3
|
|
result = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
|
|
result *= input_x
|
|
expect = Tensor(np.array([[12, -6], [6, 51]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assignmul_tensor():
|
|
result = 3
|
|
input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16)
|
|
result *= input_x
|
|
expect = Tensor(np.array([[12, -6], [6, 51]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assigndiv_number():
|
|
input_x = 2
|
|
result = 5
|
|
result /= input_x
|
|
expect = 2.5
|
|
assert np.all(result == expect)
|
|
|
|
|
|
def test_tensor_assigndiv_tensor():
|
|
input_x = Tensor(np.array([[2, 2], [3, 3]]))
|
|
result = Tensor(np.array([[4, -2], [6, 15]]))
|
|
result /= input_x
|
|
expect = Tensor(np.array([[2, -1], [2, 5]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_tensor_assigndiv_number():
|
|
input_x = 3
|
|
result = Tensor(np.array([[9, -3], [6, 15]])).astype(np.float16)
|
|
result /= input_x
|
|
expect = Tensor(np.array([[3, -1], [2, 5]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assigndiv_tensor():
|
|
result = 3
|
|
input_x = Tensor(np.array([[2, -2], [2, -2]])).astype(np.float16)
|
|
result /= input_x
|
|
expect = Tensor(np.array([[1.5, -1.5], [1.5, -1.5]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assignmod_number():
|
|
input_x = 2
|
|
result = 5
|
|
result %= input_x
|
|
expect = 1
|
|
assert np.all(result == expect)
|
|
|
|
|
|
def test_tensor_assignmod_tensor():
|
|
input_x = Tensor(np.array([[2, 2], [3, 3]]))
|
|
result = Tensor(np.array([[4, -2], [6, 15]]))
|
|
result %= input_x
|
|
expect = Tensor(np.array([[0, 0], [0, 0]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_tensor_assignmod_number():
|
|
input_x = 3
|
|
result = Tensor(np.array([[9, -3], [7, 15]])).astype(np.float16)
|
|
result %= input_x
|
|
expect = Tensor(np.array([[0, 0], [1, 0]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assignmod_tensor():
|
|
result = 3
|
|
input_x = Tensor(np.array([[2, -2], [2, -2]])).astype(np.float16)
|
|
result %= input_x
|
|
expect = Tensor(np.array([[1, -1], [1, -1]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assignmulmul_number():
|
|
input_x = 2
|
|
result = 5
|
|
result **= input_x
|
|
expect = 25
|
|
assert np.all(result == expect)
|
|
|
|
|
|
def test_tensor_assignmulmul_tensor():
|
|
input_x = Tensor(np.array([[2, 2], [3, 3]]))
|
|
result = Tensor(np.array([[4, -2], [6, 5]]))
|
|
result **= input_x
|
|
expect = Tensor(np.array([[16, 4], [216, 125]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_tensor_assignmulmul_number():
|
|
input_x = 3
|
|
result = Tensor(np.array([[9, -3], [7, 5]])).astype(np.float16)
|
|
result **= input_x
|
|
expect = Tensor(np.array([[729, -27], [343, 125]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assignmulmul_tensor():
|
|
result = 3
|
|
input_x = Tensor(np.array([[2, 2], [2, 2]])).astype(np.float16)
|
|
result **= input_x
|
|
expect = Tensor(np.array([[9, 9], [9, 9]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assigndivdiv_number():
|
|
input_x = 2
|
|
result = 5
|
|
result //= input_x
|
|
expect = 2
|
|
assert np.all(result == expect)
|
|
|
|
|
|
def test_tensor_assigndivdiv_tensor():
|
|
input_x = Tensor(np.array([[2, 2], [3, 3]]))
|
|
result = Tensor(np.array([[4, -2], [6, 6]]))
|
|
result //= input_x
|
|
expect = Tensor(np.array([[2, -1], [2, 2]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_tensor_assigndivdiv_number():
|
|
input_x = 3
|
|
result = Tensor(np.array([[9, -3], [15, 9]])).astype(np.float16)
|
|
result //= input_x
|
|
expect = Tensor(np.array([[3, -1], [5, 3]]))
|
|
assert np.all(result.asnumpy() == expect)
|
|
|
|
|
|
def test_number_assigndivdiv_tensor():
|
|
result = 3
|
|
input_x = Tensor(np.array([[1, 2], [2, 2]])).astype(np.float16)
|
|
result //= input_x
|
|
expect = Tensor(np.array([[3, 1], [1, 1]]))
|
|
assert np.all(result.asnumpy() == expect)
|