mindspore/tests/st/rl/test_batch_read_write.py

130 lines
4.0 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.parameter import Parameter, ParameterTuple
from mindspore.nn.reinforcement._batch_read_write import BatchRead, BatchWrite
class DstNet(nn.Cell):
'''Dst net'''
def __init__(self):
super(DstNet, self).__init__()
self.a = Parameter(Tensor(0.1, mstype.float32), name="a")
self.dense = nn.Dense(in_channels=16, out_channels=1)
def construct(self, data):
d = self.dense(data)
out = d + self.a
return out
class SourceNet(nn.Cell):
'''Source net'''
def __init__(self):
super(SourceNet, self).__init__()
self.a = Parameter(Tensor(0.5, mstype.float32), name="a")
self.dense = nn.Dense(in_channels=16, out_channels=1, weight_init=0)
def construct(self, data):
d = self.dense(data)
out = d + self.a
return out
class Write(nn.Cell):
'''Write cell'''
def __init__(self, dst, src):
super(Write, self).__init__()
self.write = BatchWrite()
self.dst = ParameterTuple(dst.trainable_params())
self.src = ParameterTuple(src.trainable_params())
def construct(self):
success = self.write(self.dst, self.src)
return success
class Read(nn.Cell):
'''Read cell'''
def __init__(self, dst, src):
super(Read, self).__init__()
self.read = BatchRead()
self.dst = ParameterTuple(dst.trainable_params())
self.src = ParameterTuple(src.trainable_params())
def construct(self):
success = self.read(self.dst, self.src)
return success
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_read_write_model_gpu():
"""
Feature: BatchPushPull gpu TEST.
Description: Test the batch assign.
Expectation: success.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
dst_net = DstNet()
source_net = SourceNet()
dst_param = dst_net.trainable_params()
source_param = source_net.trainable_params()
nets = nn.CellList()
nets.append(dst_net)
nets.append(source_net)
# Test read source net's params to replace dst_net's params.
_ = Read(nets[0], nets[1])()
assert np.allclose(dst_param[0].asnumpy(), 0.5)
# Test write dst net's params to overwrite the source.
dst_net2 = DstNet()
nets[0] = dst_net2
_ = Write(nets[1], nets[0])()
assert np.allclose(source_param[0].asnumpy(), 0.1)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_read_write_model_cpu():
"""
Feature: BatchPushPull cpu TEST.
Description: Test the batch assign.
Expectation: success.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
dst_net = DstNet()
source_net = SourceNet()
dst_param = dst_net.trainable_params()
source_param = source_net.trainable_params()
cpu_nets = nn.CellList()
cpu_nets.append(dst_net)
cpu_nets.append(source_net)
_ = Read(cpu_nets[0], cpu_nets[1])()
assert np.allclose(dst_param[0].asnumpy(), 0.5)
dst_net2 = DstNet()
cpu_nets[0] = dst_net2
_ = Write(cpu_nets[1], cpu_nets[0])()
assert np.allclose(source_param[0].asnumpy(), 0.1)