mindspore/tests/st/nontask_sink/test_allreduce.py

56 lines
2.0 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test hccl allreduce with 8p"""
import os
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import dtype as mstype
from mindspore.ops import operations as P
from mindspore.communication.management import init
np.random.seed(1)
os.environ['GRAPH_OP_RUN'] = str(1)
os.environ['HCCL_WHITELIST_DISABLE'] = str(1)
init()
class AllReduceNet(nn.Cell):
def __init__(self):
super(AllReduceNet, self).__init__()
self.mul = P.Mul()
self.all_reduce = P.AllReduce()
self.add = P.Add()
self.y1 = Tensor(np.array([[2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2]])).astype(np.float32)
self.y2 = Tensor(np.array([[-16, -16, -16, -16], [-16, -16, -16, -16], \
[-16, -16, -16, -16]])).astype(np.float32)
def construct(self, x):
x = self.mul(x, 2)
z = self.add(x, self.y1)
z = self.all_reduce(z)
out = self.add(z, self.y2)
out = self.all_reduce(out)
out = self.mul(out, 2)
return out
def test_hccl_allreduce_8p():
net = AllReduceNet()
input_x = np.ones([3, 4]).astype(np.float32)
expect_output = [[256, 256, 256, 256], [256, 256, 256, 256], [256, 256, 256, 256]]
output = net(Tensor(input_x, mstype.float32))
assert np.allclose(output.asnumpy(), expect_output)