mindspore/model_zoo
mindspore-ci-bot a9cce969cf !5892 train alexnet by imagenet
Merge pull request !5892 from wukesong/wks_r0.5
2020-09-11 14:18:34 +08:00
..
Transformer add thirdparty notice for bert/tokenization 2020-06-29 21:06:27 +08:00
alexnet add imaget dataset 2020-09-10 15:50:25 +08:00
bert sync some bugfix of bert scripts to branch r0.5 2020-08-19 14:49:39 +08:00
deepfm Add YOLOV3-DarkNet53 to Model Zoo 2020-06-30 09:41:03 +08:00
deeplabv3 1:modify shell for deeplabv3 2020-06-10 18:55:29 +08:00
densenet121 fix bug of make file fail if not root user 2020-08-31 10:40:34 +08:00
faster_rcnn optimize fastrcnn training process 2020-06-27 03:36:09 -04:00
gat Add gat to model zoo 2020-06-16 08:32:45 +00:00
gcn Add gat to model zoo 2020-06-16 08:32:45 +00:00
googlenet googlenet support imagenet dataset on Ascend 2020-09-09 00:44:41 +08:00
lenet !2555 checkpoint add model_type 2020-06-24 15:18:37 +08:00
lenet_quant fix quantization aware training auto create graph bug 2020-06-29 17:59:08 +08:00
lstm gpu lstm performace 2020-07-01 09:50:04 +08:00
mass Mass text summarization fix bug. 2020-06-28 16:07:34 +08:00
mobilenetv2 fix quantization aware training auto create graph bug 2020-06-29 17:59:08 +08:00
mobilenetv3 fix quantization aware training auto create graph bug 2020-06-29 17:59:08 +08:00
resnet move resnet series from example to model_zoo 2020-06-28 21:44:14 +08:00
resnet_thor move resnet_thor series from example to model_zoo 2020-06-29 11:16:51 +08:00
resnext50 add resnext50 network 2020-06-29 21:22:41 +08:00
ssd change tensor dtype and shape from function to attr 2020-06-12 19:03:23 +08:00
vgg16 vgg16 support imagenet dataset on Ascend 2020-09-08 21:56:45 +08:00
wide_and_deep add wide&deep stanalone training script for gpu in model zoo 2020-06-28 12:02:30 +08:00
yolov3_darknet53 fix yolov3 bug in r0.5 2020-09-02 10:59:50 +08:00
yolov3_resnet18 Add YOLOV3-DarkNet53 to Model Zoo 2020-06-30 09:41:03 +08:00
README.md Move googlenet into ModelZoo and add superlink in README 2020-06-19 20:50:10 +08:00
__init__.py Implements of masked seq2seq pre-training for language generation. 2020-06-20 15:48:49 +08:00

README.md

Welcome to the Model Zoo for MindSpore

In order to facilitate developers to enjoy the benefits of MindSpore framework and Huawei chips, we will continue to add typical networks and models . If you have needs for the model zoo, you can file an issue on gitee or MindSpore, We will consider it in time.

  • SOTA models using the latest MindSpore APIs

  • The best benefits from MindSpore and Huawei chips

  • Officially maintained and supported

Table of Contents

Announcements

Date News
May 31, 2020 Support MindSpore v0.3.0-alpha

Models and Implementations

Computer Vision

Image Classification

GoogleNet

Parameters GoogleNet
Published Year 2014
Paper Going Deeper with Convolutions
Resource Ascend 910
Features • Mixed Precision • Multi-GPU training support with Ascend
MindSpore Version 0.3.0-alpha
Dataset CIFAR-10
Training Parameters epoch=125, batch_size = 128, lr=0.1
Optimizer Momentum
Loss Function Softmax Cross Entropy
Accuracy 1pc: 93.4%; 8pcs: 92.17%
Speed 79 ms/Step
Loss 0.0016
Params (M) 6.8
Checkpoint for Fine tuning 43.07M (.ckpt file)
Model for inference 21.50M (.onnx file), 21.60M(.geir file)
Scripts https://gitee.com/mindspore/mindspore/tree/master/model_zoo/googlenet

ResNet50

Parameters ResNet50
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

ResNet101

Parameters ResNet101
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

VGG16

Parameters VGG16
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

AlexNet

Parameters AlexNet
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

LeNet

Parameters LeNet
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

Object Detection and Segmentation

YoloV3

Parameters YoLoV3
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Mean Average Precision (mAP@0.5)
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

MobileNetV2

Parameters MobileNetV2
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Mean Average Precision (mAP@0.5)
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

MobileNetV3

Parameters MobileNetV3
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Mean Average Precision (mAP@0.5)
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

SSD

Parameters SSD
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Mean Average Precision (mAP@0.5)
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

Natural Language Processing

BERT

Parameters BERT
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
GLUE Score
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

MASS

Parameters MASS
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
ROUGE Score
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

License

Apache License 2.0