vm for mod

This commit is contained in:
jiangjinsheng 2020-06-28 12:03:55 +08:00
parent ea475637a1
commit ffd0352162
7 changed files with 106 additions and 6 deletions

View File

@ -306,6 +306,18 @@ def get_bprop_floormod(self):
return bprop
@bprop_getters.register(P.Mod)
def get_bprop_mod(self):
"""Grad definition for `Mod` operation."""
def bprop(x, y, out, dout):
bc_x = dout
bc_y = -dout * (x // y)
return binop_grad_common(x, y, bc_x, bc_y)
return bprop
@bprop_getters.register(P.Square)
def get_bprop_square(self):
"""Grad definition for `Square` operation."""

View File

@ -276,3 +276,4 @@ from .lrn_grad import _lrn_grad_tbe
from .scatter_max import _scatter_max_tbe
from .scatter_min import _scatter_min_tbe
from .scatter_sub import _scatter_sub_tbe
from .mod import _mod_tbe

View File

@ -0,0 +1,45 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Mod op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
mod_op_info = TBERegOp("Mod") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("mod.so") \
.compute_cost(10) \
.kernel_name("mod") \
.partial_flag(True) \
.input(0, "x1", False, "required", "all") \
.input(1, "x2", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.I8_5HD, DataType.I8_5HD, DataType.I8_5HD) \
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.U8_Default) \
.dtype_format(DataType.U8_5HD, DataType.U8_5HD, DataType.U8_5HD) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I32_5HD, DataType.I32_5HD, DataType.I32_5HD) \
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD) \
.get_op_info()
@op_info_register(mod_op_info)
def _mod_tbe():
"""Mod TBE register"""
return

View File

@ -45,7 +45,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
BitwiseXor, Inv, Invert, ApproximateEqual, InplaceAdd, InplaceSub,
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd,
Cos, Div, DivNoNan, Equal, EqualCount, Exp, Expm1, Erf, Erfc, Floor, FloorDiv, FloorMod, Ceil,
Acosh, Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd,
Acosh, Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, Mod,
LogicalNot, LogicalOr, MatMul, Maximum,
Minimum, Mul, Neg, NMSWithMask, NotEqual,
NPUAllocFloatStatus, NPUClearFloatStatus,
@ -322,7 +322,8 @@ __all__ = [
"ApproximateEqual",
"InplaceUpdate",
"InTopK",
"LRN"
"LRN",
"Mod"
]
__all__.sort()

View File

@ -1361,7 +1361,7 @@ class HistogramFixedWidth(PrimitiveWithInfer):
Inputs:
- **x** (Tensor) - Numeric Tensor. Must be one of the following types: int32, float32, float16.
- **range** (Tensor) - Must have the same type as x. Shape [2] Tensor of same dtype as x.
x <= range[0] will be mapped to hist[0], x >= range[1] will be mapped to hist[-1].
x <= range[0] will be mapped to hist[0], x >= range[1] will be mapped to hist[-1].
Outputs:
Tensor, the type is int32.
@ -1645,8 +1645,9 @@ class Div(_MathBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
a bool or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
a bool when the first input is a tensor or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - When the first input is a tensor, The second input
could be a number or a bool, or a tensor whose data type is number or bool. When the first input
is a number or a bool, the second input should be a tensor whose data type is number or bool.
Outputs:
Tensor, the shape is same as the shape after broadcasting,
@ -1742,6 +1743,42 @@ class FloorDiv(_MathBinaryOp):
"""
class Mod(_MathBinaryOp):
"""
Computes the remainder of dividing the first input tensor by the second input tensor element-wise.
The inputs must be two tensors or one tensor and one scalar. When the inputs are two tensors,
both dtypes cannot be bool, and the shapes of them could be broadcast. When the inputs are one tensor
and one scalar, the scalar only could be a constant.
Inputs:
- **input_x** (Union[Tensor, Number]) - The first input is a number or a tensor whose data type is number.
- **input_y** (Union[Tensor, Number]) - When the first input is a tensor, The second input
could be a number or a tensor whose data type is number. When the first input is a number,
the second input should be a tensor whose data type is number.
Outputs:
Tensor, the shape is same as the shape after broadcasting,
and the data type is the one with high precision or high digits among the two inputs.
Raises:
ValueError: When `input_x` and `input_y` are not the same dtype.
Examples:
>>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
>>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32)
>>> mod = P.Mod()
>>> mod(input_x, input_y)
"""
def infer_value(self, x, y):
if x is not None and y is not None:
x = x.asnumpy()
y = y.asnumpy()
return Tensor(np.fmod(x, y))
return None
class Floor(PrimitiveWithInfer):
"""
Round a tensor down to the closest integer element-wise.

View File

@ -1669,7 +1669,7 @@ class DataFormatDimMap(PrimitiveWithInfer):
Inputs:
- **input_x** (Tensor) - A Tensor with each element as a dimension index in source data format.
Must be in the range [-4, 4). It's type is int32.
Must be in the range [-4, 4). It's type is int32.
Outputs:
Tensor, has the same type as the `input_x`.

View File

@ -996,6 +996,10 @@ test_case_math_ops = [
'block': NormalNet((3, 2, 4), 0.0, 1.0, 0),
'desc_inputs': [],
'skip': ['backward']}),
('Mod', {
'block': P.Mod(),
'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
'desc_bprop': [[2, 3, 4, 5]]}),
]
test_case_nn_ops = [