forked from mindspore-Ecosystem/mindspore
!9178 add some pynative st test_cases in gpu
From: @lvchangquan Reviewed-by: @kisnwang Signed-off-by:
This commit is contained in:
commit
ff2c44c935
|
@ -23,9 +23,6 @@ from mindspore.common.tensor import Tensor
|
|||
from mindspore.ops.composite import GradOperation
|
||||
from mindspore.common import ParameterTuple
|
||||
|
||||
def setup_module():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
class MetaFactory:
|
||||
def __init__(self):
|
||||
self.device_target = context.get_context('device_target')
|
||||
|
@ -228,11 +225,7 @@ def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
|
|||
else:
|
||||
assert True
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_diff_hook():
|
||||
def pynative_hook_diff_hook():
|
||||
input_np = np.ones([1, 1, 224, 224]).astype(np.float32)
|
||||
ms_net = FinalNet()
|
||||
ms_net.set_grad()
|
||||
|
@ -244,11 +237,7 @@ def test_pynative_hook_diff_hook():
|
|||
grad_net.set_train()
|
||||
grad_net(input_ms, Tensor(1), out_ms)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_not_change_grad():
|
||||
def pynative_hook_outermost_cell_not_change_grad():
|
||||
input_np = np.ones([2, 2]).astype(np.float32)
|
||||
|
||||
ms_net = MsOneInputNet()
|
||||
|
@ -269,11 +258,7 @@ def test_pynative_hook_outermost_cell_not_change_grad():
|
|||
allclose_nparray(torch_net_grad_output, ms_net.grad_input_list[0].asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(torch_net_grad_input, ms_net.grad_output_list[0].asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_all_cell_record_grad():
|
||||
def pynative_hook_all_cell_record_grad():
|
||||
input_np = np.ones([2, 2]).astype(np.float32)
|
||||
|
||||
ms_net = MsOneInputNet()
|
||||
|
@ -301,11 +286,7 @@ def test_pynative_hook_all_cell_record_grad():
|
|||
allclose_nparray(torch_net_grad_input3, ms_net.grad_output_list[2].asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(torch_net_grad_output2, ms_net.grad_input_list[2].asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_mul_change_input_grad():
|
||||
def pynative_hook_mul_change_input_grad():
|
||||
input_np = np.ones([2, 2]).astype(np.float32)
|
||||
|
||||
ms_net = MsOneInputNet()
|
||||
|
@ -321,11 +302,7 @@ def test_pynative_hook_mul_change_input_grad():
|
|||
input_torch_grad = np.array([[40, 40], [40, 40]])
|
||||
allclose_nparray(input_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_mul2_change_input_grad():
|
||||
def pynative_hook_mul2_change_input_grad():
|
||||
input1_np = np.array([2.0, 3.0, 4.0]).astype(np.float32)
|
||||
input2_np = np.array([2.0, 3.0, 4.0]).astype(np.float32)
|
||||
|
||||
|
@ -345,11 +322,7 @@ def test_pynative_hook_mul2_change_input_grad():
|
|||
allclose_nparray(input1_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(input2_torch_grad, input_ms_grad[1].asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_change_grad():
|
||||
def pynative_hook_outermost_cell_change_grad():
|
||||
input_np = np.ones([2, 2]).astype(np.float32)
|
||||
|
||||
ms_net = MsNetWithCellinCell()
|
||||
|
@ -367,11 +340,7 @@ def test_pynative_hook_outermost_cell_change_grad():
|
|||
allclose_nparray(out_torch, out_ms.asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(input_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_record_grad():
|
||||
def pynative_hook_outermost_cell_record_grad():
|
||||
input_np = np.ones([2, 2]).astype(np.float32)
|
||||
|
||||
ms_net = MsSingleOpNetWithBprop()
|
||||
|
@ -393,11 +362,7 @@ def test_pynative_hook_outermost_cell_record_grad():
|
|||
allclose_nparray(out_torch, out_ms.asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(input_torch_grad, input_ms_grad[0].asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_bprop_outermost_cell_record_grad():
|
||||
def pynative_hook_bprop_outermost_cell_record_grad():
|
||||
input_np = np.ones([2, 2]).astype(np.float32)
|
||||
|
||||
ms_net = MsNetHasBpropInChild()
|
||||
|
@ -424,11 +389,7 @@ def test_pynative_hook_bprop_outermost_cell_record_grad():
|
|||
allclose_nparray(torch_net_grad_output, ms_net.grad_input_list[0].asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(torch_net_grad_input, ms_net.grad_output_list[0].asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_child_cell_record_grad():
|
||||
def pynative_hook_child_cell_record_grad():
|
||||
input_np = np.ones([2, 2]).astype(np.float32)
|
||||
|
||||
ms_net = MsMultiOpNetWithBprop()
|
||||
|
@ -444,3 +405,138 @@ def test_pynative_hook_child_cell_record_grad():
|
|||
|
||||
if ms_net.grad_output_list or ms_net.grad_input_list:
|
||||
assert False
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_diff_hook_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_diff_hook()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_diff_hook_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_diff_hook()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_not_change_grad_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_outermost_cell_not_change_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_not_change_grad_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_outermost_cell_not_change_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_all_cell_record_grad_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_all_cell_record_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_all_cell_record_grad_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_all_cell_record_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_mul_change_input_grad_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_mul_change_input_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_mul_change_input_grad_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_mul_change_input_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_mul2_change_input_grad_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_mul2_change_input_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_mul2_change_input_grad_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_mul2_change_input_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_change_grad_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_outermost_cell_change_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_change_grad_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_outermost_cell_change_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_record_grad_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_outermost_cell_record_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_outermost_cell_record_grad_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_outermost_cell_record_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_bprop_outermost_cell_record_grad_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_bprop_outermost_cell_record_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_bprop_outermost_cell_record_grad_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_bprop_outermost_cell_record_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_child_cell_record_grad_ascend():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_hook_child_cell_record_grad()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_hook_child_cell_record_grad_gpu():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
pynative_hook_child_cell_record_grad()
|
||||
|
|
|
@ -126,19 +126,19 @@ class LayerNormFactory(OpsFactory):
|
|||
return input_grad[0][0].asnumpy(), input_grad[1][1].asnumpy(), input_grad[1][0].asnumpy()
|
||||
|
||||
def forward_cmp(self):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=context.get_context('device_target'))
|
||||
graph_out = self.forward_mindspore_impl()
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target=context.get_context('device_target'))
|
||||
pynative_out = self.forward_mindspore_impl()
|
||||
|
||||
allclose_nparray(graph_out[0], pynative_out[0], self.loss, self.loss)
|
||||
|
||||
def grad_cmp(self):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=context.get_context('device_target'))
|
||||
graph_grad1, graph_grad2, graph_grad3 = self.grad_mindspore_impl()
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target=context.get_context('device_target'))
|
||||
pynative_grad1, pynative_grad2, pynative_grad3 = self.grad_mindspore_impl()
|
||||
|
||||
allclose_nparray(graph_grad1, pynative_grad1, self.loss, self.loss)
|
||||
|
@ -197,30 +197,52 @@ class ArgMaxWithValueFactory(OpsFactory):
|
|||
allclose_nparray(out_numpy[1], out_mindspore[1], self.loss, self.loss)
|
||||
|
||||
def grad_cmp(self):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=context.get_context('device_target'))
|
||||
graph_grad = self.grad_mindspore_impl()
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target=context.get_context('device_target'))
|
||||
pynative_grad = self.grad_mindspore_impl()
|
||||
|
||||
allclose_nparray(graph_grad, pynative_grad, self.loss, self.loss)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_layernorm_input():
|
||||
def layernorm_input():
|
||||
fact = LayerNormFactory(input_shape=(1, 128, 1024), norm_shape=(1024,), gamma_shape=(1024,), beta_shape=(1024,),
|
||||
norm_axis=2, params_axis=2, dtype=np.float16)
|
||||
fact.forward_cmp()
|
||||
fact.loss = 5e-3
|
||||
fact.grad_cmp()
|
||||
|
||||
def argmaxwithvalue_input():
|
||||
fact = ArgMaxWithValueFactory(input_shape=[1024, 1024], axis=-1, keep_dims=False)
|
||||
fact.forward_cmp()
|
||||
fact.grad_cmp()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_argmaxwithvalue_input():
|
||||
fact = ArgMaxWithValueFactory(input_shape=[1024, 1024], axis=-1, keep_dims=False)
|
||||
fact.forward_cmp()
|
||||
fact.grad_cmp()
|
||||
def test_layernorm_input_ascend():
|
||||
context.set_context(device_target="Ascend")
|
||||
layernorm_input()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_layernorm_input_gpu():
|
||||
context.set_context(device_target="GPU")
|
||||
layernorm_input()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_argmaxwithvalue_input_ascend():
|
||||
context.set_context(device_target="Ascend")
|
||||
argmaxwithvalue_input()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_argmaxwithvalue_input_gpu():
|
||||
context.set_context(device_target="GPU")
|
||||
argmaxwithvalue_input()
|
||||
|
|
|
@ -85,7 +85,7 @@ def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
|
|||
else:
|
||||
assert True
|
||||
|
||||
def mixed_precision_multiple_cells_01():
|
||||
def mixed_precision_multiple_cells_temp_01():
|
||||
np.random.seed(1)
|
||||
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
|
||||
net = ReluTanhSoftmax()
|
||||
|
@ -95,7 +95,7 @@ def mixed_precision_multiple_cells_01():
|
|||
out_me_relu_01, out_me_tanh_01, out_me_softmax_01 = net(Tensor(x))
|
||||
return out_me_relu_01, out_me_tanh_01, out_me_softmax_01
|
||||
|
||||
def mixed_precision_multiple_cells_02():
|
||||
def mixed_precision_multiple_cells_temp_02():
|
||||
np.random.seed(1)
|
||||
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
|
||||
net = ReluTanhSoftmax()
|
||||
|
@ -105,7 +105,7 @@ def mixed_precision_multiple_cells_02():
|
|||
out_me_relu_02, out_me_tanh_02, out_me_softmax_02 = net(Tensor(x))
|
||||
return out_me_relu_02, out_me_tanh_02, out_me_softmax_02
|
||||
|
||||
def mixed_precision_multiple_cells_03():
|
||||
def mixed_precision_multiple_cells_temp_03():
|
||||
np.random.seed(1)
|
||||
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
|
||||
net = ReluTanhAdd()
|
||||
|
@ -115,45 +115,78 @@ def mixed_precision_multiple_cells_03():
|
|||
out_me = net(Tensor(x))
|
||||
return out_me
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mixed_precision_multiples_cell_01():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
graph_relu_01, graph_tanh_01, graph_softmax_01 = mixed_precision_multiple_cells_01()
|
||||
def mixed_precision_multiples_cell_01():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=context.get_context('device_target'))
|
||||
graph_relu_01, graph_tanh_01, graph_softmax_01 = mixed_precision_multiple_cells_temp_01()
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_relu_01, pynative_tanh_01, pynative_softmax_01 = mixed_precision_multiple_cells_01()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target=context.get_context('device_target'))
|
||||
pynative_relu_01, pynative_tanh_01, pynative_softmax_01 = mixed_precision_multiple_cells_temp_01()
|
||||
|
||||
allclose_nparray(graph_relu_01.asnumpy(), pynative_relu_01.asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(graph_tanh_01.asnumpy(), pynative_tanh_01.asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(graph_softmax_01.asnumpy(), pynative_softmax_01.asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mixed_precision_multiples_cell_02():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
graph_relu_02, graph_tanh_02, graph_softmax_02 = mixed_precision_multiple_cells_02()
|
||||
def mixed_precision_multiples_cell_02():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=context.get_context('device_target'))
|
||||
graph_relu_02, graph_tanh_02, graph_softmax_02 = mixed_precision_multiple_cells_temp_02()
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_relu_02, pynative_tanh_02, pynative_softmax_02 = mixed_precision_multiple_cells_02()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target=context.get_context('device_target'))
|
||||
pynative_relu_02, pynative_tanh_02, pynative_softmax_02 = mixed_precision_multiple_cells_temp_02()
|
||||
|
||||
allclose_nparray(graph_relu_02.asnumpy(), pynative_relu_02.asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(graph_tanh_02.asnumpy(), pynative_tanh_02.asnumpy(), 0.001, 0.001)
|
||||
allclose_nparray(graph_softmax_02.asnumpy(), pynative_softmax_02.asnumpy(), 0.001, 0.001)
|
||||
|
||||
def mixed_precision_multiples_cell_03():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=context.get_context('device_target'))
|
||||
graph_output_03 = mixed_precision_multiple_cells_temp_03()
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target=context.get_context('device_target'))
|
||||
pynative_output_03 = mixed_precision_multiple_cells_temp_03()
|
||||
|
||||
allclose_nparray(graph_output_03.asnumpy(), pynative_output_03.asnumpy(), 0.001, 0.001)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mixed_precision_multiples_cell_03():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
graph_output_03 = mixed_precision_multiple_cells_03()
|
||||
def test_mixed_precision_multiples_cell_ascend_01():
|
||||
context.set_context(device_target="Ascend")
|
||||
mixed_precision_multiples_cell_01()
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
pynative_output_03 = mixed_precision_multiple_cells_03()
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mixed_precision_multiples_cell_gpu_01():
|
||||
context.set_context(device_target="GPU")
|
||||
mixed_precision_multiples_cell_01()
|
||||
|
||||
allclose_nparray(graph_output_03.asnumpy(), pynative_output_03.asnumpy(), 0.001, 0.001)
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mixed_precision_multiples_cell_ascend_02():
|
||||
context.set_context(device_target="Ascend")
|
||||
mixed_precision_multiples_cell_02()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mixed_precision_multiples_cell_gpu_02():
|
||||
context.set_context(device_target="GPU")
|
||||
mixed_precision_multiples_cell_02()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mixed_precision_multiples_cell_ascend_03():
|
||||
context.set_context(device_target="Ascend")
|
||||
mixed_precision_multiples_cell_03()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_mixed_precision_multiples_cell_gpu_03():
|
||||
context.set_context(device_target="GPU")
|
||||
mixed_precision_multiples_cell_03()
|
||||
|
|
Loading…
Reference in New Issue