forked from mindspore-Ecosystem/mindspore
!7865 modify README.md
Merge pull request !7865 from wukesong/modify-readme
This commit is contained in:
commit
fbc95d6419
|
@ -30,6 +30,8 @@ AlexNet composition consists of 5 convolutional layers and 3 fully connected lay
|
|||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
|
||||
|
||||
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
||||
|
||||
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
||||
|
@ -195,15 +197,15 @@ Before running the command below, please check the checkpoint path used for eval
|
|||
| -------------------------- | ------------------------------------------------------------| -------------------------------------------------|
|
||||
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G | NV SMX2 V100-32G |
|
||||
| uploaded Date | 06/09/2020 (month/day/year) | 17/09/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-beta | 0.7.0-beta |
|
||||
| MindSpore Version | 1.0.0 | 0.7.0-beta |
|
||||
| Dataset | CIFAR-10 | CIFAR-10 |
|
||||
| Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 | epoch=30, steps=1562, batch_size = 32, lr=0.002 |
|
||||
| Optimizer | Momentum | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
|
||||
| outputs | probability | probability |
|
||||
| Loss | 0.0016 | 0.01 |
|
||||
| Speed | 21 ms/step | 16.8 ms/step |
|
||||
| Total time | 17 mins | 14 mins |
|
||||
| Loss | 0.08 | 0.01 |
|
||||
| Speed | 7.3 ms/step | 16.8 ms/step |
|
||||
| Total time | 6 mins | 14 mins |
|
||||
| Checkpoint for Fine tuning | 445M (.ckpt file) | 445M (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet |
|
||||
|
||||
|
|
|
@ -30,6 +30,8 @@ LeNet is very simple, which contains 5 layers. The layer composition consists of
|
|||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
|
||||
|
||||
Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
|
||||
|
||||
- Dataset size:52.4M,60,000 28*28 in 10 classes
|
||||
|
@ -165,16 +167,16 @@ You can view the results through the file "log.txt". The accuracy of the test da
|
|||
| Parameters | LeNet |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
||||
| uploaded Date | 06/09/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-beta |
|
||||
| uploaded Date | 09/16/2020 (month/day/year) |
|
||||
| MindSpore Version | 1.0.0 |
|
||||
| Dataset | MNIST |
|
||||
| Training Parameters | epoch=10, steps=1875, batch_size = 32, lr=0.01 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 0.002 |
|
||||
| Speed | 1.70 ms/step |
|
||||
| Total time | 43.1s | |
|
||||
| Speed | 1.071 ms/step |
|
||||
| Total time | 32.1s | |
|
||||
| Checkpoint for Fine tuning | 482k (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet |
|
||||
|
||||
|
|
Loading…
Reference in New Issue