transformer bucket batch modification

This commit is contained in:
yuchaojie 2020-09-11 16:10:29 +08:00
parent a0e3fd6bf3
commit fa1247a85e
10 changed files with 168 additions and 129 deletions

View File

@ -54,10 +54,10 @@ After dataset preparation, you can start training and evaluation as follows:
```bash
# run training example
sh scripts/run_standalone_train_ascend.sh 0 52 /path/ende-l128-mindrecord00
sh scripts/run_standalone_train_ascend.sh 0 52 /path/ende-l128-mindrecord
# run distributed training example
sh scripts/run_distribute_train_ascend.sh 8 52 /path/newstest2014-l128-mindrecord rank_table.json
sh scripts/run_distribute_train_ascend.sh 8 52 /path/ende-l128-mindrecord rank_table.json
# run evaluation example
python eval.py > eval.log 2>&1 &
@ -104,6 +104,7 @@ usage: train.py [--distribute DISTRIBUTE] [--epoch_size N] [----device_num N] [
[--enable_data_sink ENABLE_DATA_SINK] [--save_checkpoint_steps N]
[--save_checkpoint_num N] [--save_checkpoint_path SAVE_CHECKPOINT_PATH]
[--data_path DATA_PATH]
[--bucket_boundaries BUCKET_LENGTH]
options:
--distribute pre_training by serveral devices: "true"(training by more than 1 device) | "false", default is "false"
@ -119,6 +120,7 @@ options:
--save_checkpoint_num number for saving checkpoint files: N, default is 30
--save_checkpoint_path path to save checkpoint files: PATH, default is "./checkpoint/"
--data_path path to dataset file: PATH, default is ""
--bucket_boundaries sequence lengths for different bucket: LIST, default is [16, 32, 48, 64, 128]
```
### Running Options
@ -179,13 +181,13 @@ Parameters for learning rate:
``` bash
paste train.tok.clean.bpe.32000.en train.tok.clean.bpe.32000.de > train.all
python create_data.py --input_file train.all --vocab_file vocab.bpe.32000 --output_file /path/ende-l128-mindrecord --max_seq_length 128
python create_data.py --input_file train.all --vocab_file vocab.bpe.32000 --output_file /path/ende-l128-mindrecord --max_seq_length 128 --bucket [16, 32, 48, 64, 128]
```
- Convert the original data to mindrecord for evaluation:
``` bash
paste newstest2014.tok.bpe.32000.en newstest2014.tok.bpe.32000.de > test.all
python create_data.py --input_file test.all --vocab_file vocab.bpe.32000 --output_file /path/newstest2014-l128-mindrecord --num_splits 1 --max_seq_length 128 --clip_to_max_len True
python create_data.py --input_file test.all --vocab_file vocab.bpe.32000 --output_file /path/newstest2014-l128-mindrecord --num_splits 1 --max_seq_length 128 --clip_to_max_len True --bucket [128]
```

View File

@ -51,20 +51,29 @@ class SampleInstance():
return self.__str__()
def write_instance_to_file(writer, instance, tokenizer, max_seq_length):
def write_instance_to_file(writer, instance, tokenizer, max_seq_length, bucket):
"""Create files from `SampleInstance`s."""
def _find_bucket_length(num):
assert num <= bucket[-1]
for index in range(1, len(bucket)):
if bucket[index - 1] < num <= bucket[index]:
return bucket[index]
return bucket[0]
def _convert_ids_and_mask(input_tokens):
input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
input_mask = [1] * len(input_ids)
assert len(input_ids) <= max_seq_length
while len(input_ids) < max_seq_length:
seq_max_bucket_length = _find_bucket_length(len(input_ids))
while len(input_ids) < seq_max_bucket_length:
input_ids.append(0)
input_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(input_ids) == seq_max_bucket_length
assert len(input_mask) == seq_max_bucket_length
return input_ids, input_mask
@ -93,7 +102,6 @@ def create_training_instance(source_words, target_words, max_seq_length, clip_to
if len(source_words) >= max_seq_length or len(target_words) >= max_seq_length:
if clip_to_max_len:
print("####lalalal")
source_words = source_words[:min([len(source_words, max_seq_length-1)])]
target_words = target_words[:min([len(target_words, max_seq_length-1)])]
else:
@ -123,6 +131,8 @@ def main():
parser.add_argument("--clip_to_max_len", type=bool, default=False,
help='clip sequences to maximum sequence length.')
parser.add_argument("--max_seq_length", type=int, default=128, help='Maximum sequence length.')
parser.add_argument("--bucket", type=list, default=[16, 32, 48, 64, 128], help='bucket sequence length')
args = parser.parse_args()
tokenizer = tokenization.WhiteSpaceTokenizer(vocab_file=args.vocab_file)
@ -179,7 +189,7 @@ def main():
if instance is None:
continue
features = write_instance_to_file(writer, instance, tokenizer, args.max_seq_length)
features = write_instance_to_file(writer, instance, tokenizer, args.max_seq_length, args.bucket)
total_written += 1
if total_written <= 20:

View File

@ -52,7 +52,7 @@ do
--enable_save_ckpt="true" \
--enable_lossscale="true" \
--do_shuffle="true" \
--enable_data_sink="true" \
--enable_data_sink="false" \
--checkpoint_path="" \
--save_checkpoint_steps=2500 \
--save_checkpoint_num=30 \

View File

@ -37,7 +37,7 @@ python train.py \
--enable_save_ckpt="true" \
--enable_lossscale="true" \
--do_shuffle="true" \
--enable_data_sink="true" \
--enable_data_sink="false" \
--checkpoint_path="" \
--save_checkpoint_steps=2500 \
--save_checkpoint_num=30 \

View File

@ -134,6 +134,7 @@ class BeamSearchDecoder(nn.Cell):
eos_id=2,
compute_type=mstype.float32):
super(BeamSearchDecoder, self).__init__(auto_prefix=False)
self.seq_length = seq_length
self.batch_size = batch_size
self.vocab_size = vocab_size
self.beam_width = beam_width
@ -182,7 +183,7 @@ class BeamSearchDecoder(nn.Cell):
"""
One step for decode
"""
log_probs = self.decoder(cur_input_ids, enc_states, enc_attention_mask)
log_probs = self.decoder(cur_input_ids, enc_states, enc_attention_mask, self.seq_length)
log_probs = self.reshape(log_probs, (self.batch_size, self.beam_width, self.vocab_size))
# select topk indices

View File

@ -15,30 +15,40 @@
"""Data operations, will be used in train.py."""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset as de
import mindspore.dataset.transforms.c_transforms as deC
from .config import transformer_net_cfg
de.config.set_seed(1)
def create_transformer_dataset(epoch_count=1, rank_size=1, rank_id=0, do_shuffle="true", enable_data_sink="true",
dataset_path=None):
dataset_path=None, bucket_boundaries=None):
"""create dataset"""
repeat_count = epoch_count
ds = de.MindDataset(dataset_path,
columns_list=["source_eos_ids", "source_eos_mask",
"target_sos_ids", "target_sos_mask",
"target_eos_ids", "target_eos_mask"],
shuffle=(do_shuffle == "true"), num_shards=rank_size, shard_id=rank_id)
def batch_per_bucket(bucket_len, dataset_path):
dataset_path = dataset_path + "_" + str(bucket_len) + "_00"
ds = de.MindDataset(dataset_path,
columns_list=["source_eos_ids", "source_eos_mask",
"target_sos_ids", "target_sos_mask",
"target_eos_ids", "target_eos_mask"],
shuffle=(do_shuffle == "true"), num_shards=rank_size, shard_id=rank_id)
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="source_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="source_eos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_mask")
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="source_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="source_eos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_mask")
# apply batch operations
ds = ds.batch(transformer_net_cfg.batch_size, drop_remainder=True)
ds = ds.repeat(repeat_count)
# apply batch operations
ds = ds.batch(transformer_net_cfg.batch_size, drop_remainder=True)
ds = ds.repeat(epoch_count)
return ds
for i, _ in enumerate(bucket_boundaries):
bucket_len = bucket_boundaries[i]
ds_per = batch_per_bucket(bucket_len, dataset_path)
if i == 0:
ds = ds_per
else:
ds = ds + ds_per
ds = ds.shuffle(ds.get_dataset_size())
ds.channel_name = 'transformer'
return ds

View File

@ -95,12 +95,13 @@ class TransformerTrainingLoss(nn.Cell):
self.flatten = P.Flatten()
self.neg = P.Neg()
self.cast = P.Cast()
self.flat_shape = (config.batch_size * config.seq_length,)
self.batch_size = config.batch_size
def construct(self, prediction_scores, label_ids, label_weights):
def construct(self, prediction_scores, label_ids, label_weights, seq_length):
"""Defines the computation performed."""
label_ids = self.reshape(label_ids, self.flat_shape)
label_weights = self.cast(self.reshape(label_weights, self.flat_shape), mstype.float32)
flat_shape = (self.batch_size * seq_length,)
label_ids = self.reshape(label_ids, flat_shape)
label_weights = self.cast(self.reshape(label_weights, flat_shape), mstype.float32)
one_hot_labels = self.onehot(label_ids, self.vocab_size, self.on_value, self.off_value)
per_example_loss = self.neg(self.reduce_sum(prediction_scores * one_hot_labels, self.last_idx))
@ -128,6 +129,7 @@ class TransformerNetworkWithLoss(nn.Cell):
self.transformer = TransformerModel(config, is_training, use_one_hot_embeddings)
self.loss = TransformerTrainingLoss(config)
self.cast = P.Cast()
self.shape = P.Shape()
def construct(self,
source_ids,
@ -136,8 +138,10 @@ class TransformerNetworkWithLoss(nn.Cell):
target_mask,
label_ids,
label_weights):
"""Transformer network with loss."""
prediction_scores = self.transformer(source_ids, source_mask, target_ids, target_mask)
total_loss = self.loss(prediction_scores, label_ids, label_weights)
seq_length = self.shape(source_ids)[1]
total_loss = self.loss(prediction_scores, label_ids, label_weights, seq_length)
return self.cast(total_loss, mstype.float32)
@ -156,7 +160,6 @@ class TransformerTrainOneStepCell(nn.Cell):
def __init__(self, network, optimizer, sens=1.0):
super(TransformerTrainOneStepCell, self).__init__(auto_prefix=False)
self.network = network
self.network.set_grad()
self.weights = ParameterTuple(network.trainable_params())
self.optimizer = optimizer
self.grad = C.GradOperation(get_by_list=True, sens_param=True)

View File

@ -23,6 +23,7 @@ import mindspore.ops.functional as F
from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor
from mindspore.common.parameter import Parameter
from mindspore.ops.primitive import constexpr
from .beam_search import BeamSearchDecoder, TileBeam
from .weight_init import normal_weight, weight_variable
@ -296,8 +297,6 @@ class MultiheadAttention(nn.Cell):
from_tensor_width,
to_tensor_width,
out_tensor_width,
from_seq_length,
to_seq_length,
num_attention_heads=1,
size_per_head=512,
query_act=None,
@ -312,12 +311,13 @@ class MultiheadAttention(nn.Cell):
compute_type=mstype.float32):
super(MultiheadAttention, self).__init__()
self.batch_size = batch_size
self.from_seq_length = from_seq_length
self.to_seq_length = to_seq_length
self.num_attention_heads = num_attention_heads
self.size_per_head = size_per_head
self.has_attention_mask = has_attention_mask
assert has_attention_mask
self.use_one_hot_embeddings = use_one_hot_embeddings
self.initializer_range = initializer_range
self.do_return_2d_tensor = do_return_2d_tensor
self.scores_mul = Tensor([1.0 / math.sqrt(float(self.size_per_head))], dtype=compute_type)
self.reshape = P.Reshape()
@ -345,9 +345,6 @@ class MultiheadAttention(nn.Cell):
has_bias=False,
weight_init=weight_variable([out_tensor_width, units])).to_float(compute_type)
self.shape_from = (batch_size, from_seq_length, num_attention_heads, size_per_head)
self.shape_to = (batch_size, to_seq_length, num_attention_heads, size_per_head)
self.matmul_trans_b = P.BatchMatMul(transpose_b=True)
self.multiply = P.Mul()
self.transpose = P.Transpose()
@ -368,27 +365,33 @@ class MultiheadAttention(nn.Cell):
self.add = P.TensorAdd()
self.cast = P.Cast()
self.get_dtype = P.DType()
if do_return_2d_tensor:
self.shape_return = (batch_size * from_seq_length, num_attention_heads * size_per_head)
if from_seq_length == -1:
self.shape_return = (-1, num_attention_heads * size_per_head)
else:
self.shape_return = (batch_size, from_seq_length, num_attention_heads * size_per_head)
self.cast_compute_type = CastWrapper(dst_type=compute_type)
self.softmax_cast = P.Cast()
def construct(self, from_tensor, to_tensor, attention_mask=None):
"""reshape 2d/3d input tensors to 2d"""
def construct(self, from_tensor, to_tensor, seq_length, enc_seq_length, attention_mask=None):
"""Apply multihead attention."""
from_seq_length = seq_length
to_seq_length = enc_seq_length
shape_from = (self.batch_size, from_seq_length, self.num_attention_heads, self.size_per_head)
shape_to = (self.batch_size, to_seq_length, self.num_attention_heads, self.size_per_head)
if self.do_return_2d_tensor:
shape_return = (self.batch_size * from_seq_length, self.num_attention_heads * self.size_per_head)
if from_seq_length == -1:
shape_return = (-1, self.num_attention_heads * self.size_per_head)
else:
shape_return = (self.batch_size, from_seq_length, self.num_attention_heads * self.size_per_head)
# reshape 2d/3d input tensors to 2d
from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d)
to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d)
query_out = self.query_layer(from_tensor_2d)
key_out = self.key_layer(to_tensor_2d)
value_out = self.value_layer(to_tensor_2d)
query_layer = self.reshape(query_out, self.shape_from)
query_layer = self.reshape(query_out, shape_from)
query_layer = self.transpose(query_layer, self.trans_shape)
key_layer = self.reshape(key_out, self.shape_to)
key_layer = self.reshape(key_out, shape_to)
key_layer = self.transpose(key_layer, self.trans_shape)
attention_scores = self.matmul_trans_b(query_layer, key_layer)
@ -407,12 +410,12 @@ class MultiheadAttention(nn.Cell):
if self.use_dropout:
attention_probs = self.dropout(attention_probs)
value_layer = self.reshape(value_out, self.shape_to)
value_layer = self.reshape(value_out, shape_to)
value_layer = self.transpose(value_layer, self.trans_shape)
context_layer = self.matmul(attention_probs, value_layer)
context_layer = self.transpose(context_layer, self.trans_shape)
context_layer = self.reshape(context_layer, self.shape_return)
context_layer = self.reshape(context_layer, shape_return)
context_layer = self.out_layer(context_layer)
return context_layer
@ -438,8 +441,6 @@ class SelfAttention(nn.Cell):
"""
def __init__(self,
batch_size,
from_seq_length,
to_seq_length,
hidden_size,
num_attention_heads=16,
attention_probs_dropout_prob=0.1,
@ -461,8 +462,6 @@ class SelfAttention(nn.Cell):
from_tensor_width=hidden_size,
to_tensor_width=hidden_size,
out_tensor_width=hidden_size,
from_seq_length=from_seq_length,
to_seq_length=to_seq_length,
num_attention_heads=num_attention_heads,
size_per_head=self.size_per_head,
attention_probs_dropout_prob=attention_probs_dropout_prob,
@ -477,7 +476,7 @@ class SelfAttention(nn.Cell):
self.reshape = P.Reshape()
self.shape = (-1, hidden_size)
def construct(self, input_tensor, memory_tensor, attention_mask):
def construct(self, input_tensor, memory_tensor, attention_mask, seq_length, enc_seq_length):
"""Apply self-attention."""
input_tensor = self.reshape(input_tensor, self.shape)
memory_tensor = self.reshape(memory_tensor, self.shape)
@ -487,7 +486,7 @@ class SelfAttention(nn.Cell):
if not self.is_encdec_att:
memory_tensor = output
attention_output = self.attention(output, memory_tensor, attention_mask)
attention_output = self.attention(output, memory_tensor, seq_length, enc_seq_length, attention_mask)
output = self.postprocess(attention_output, input_tensor)
return output
@ -563,7 +562,6 @@ class EncoderCell(nn.Cell):
def __init__(self,
batch_size,
hidden_size=1024,
seq_length=128,
num_attention_heads=16,
intermediate_size=4096,
attention_probs_dropout_prob=0.1,
@ -576,8 +574,6 @@ class EncoderCell(nn.Cell):
self.attention = SelfAttention(
batch_size=batch_size,
hidden_size=hidden_size,
from_seq_length=seq_length,
to_seq_length=seq_length,
num_attention_heads=num_attention_heads,
attention_probs_dropout_prob=attention_probs_dropout_prob,
use_one_hot_embeddings=use_one_hot_embeddings,
@ -594,9 +590,9 @@ class EncoderCell(nn.Cell):
hidden_dropout_prob=hidden_dropout_prob,
compute_type=compute_type)
def construct(self, hidden_states, attention_mask):
def construct(self, hidden_states, attention_mask, seq_length):
# self-attention with ln, res
attention_output = self.attention(hidden_states, hidden_states, attention_mask)
attention_output = self.attention(hidden_states, hidden_states, attention_mask, seq_length, seq_length)
# feed forward with ln, res
output = self.feedforward(attention_output)
return output
@ -624,7 +620,6 @@ class TransformerEncoder(nn.Cell):
def __init__(self,
batch_size,
hidden_size,
seq_length,
num_hidden_layers,
num_attention_heads=16,
intermediate_size=4096,
@ -636,12 +631,13 @@ class TransformerEncoder(nn.Cell):
compute_type=mstype.float32):
super(TransformerEncoder, self).__init__()
self.num_hidden_layers = num_hidden_layers
self.batch_size = batch_size
self.hidden_size = hidden_size
layers = []
for _ in range(num_hidden_layers):
layer = EncoderCell(batch_size=batch_size,
hidden_size=hidden_size,
seq_length=seq_length,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
attention_probs_dropout_prob=attention_probs_dropout_prob,
@ -657,17 +653,18 @@ class TransformerEncoder(nn.Cell):
self.reshape = P.Reshape()
self.shape = (-1, hidden_size)
self.out_shape = (batch_size, seq_length, hidden_size)
def construct(self, input_tensor, attention_mask):
def construct(self, input_tensor, attention_mask, seq_length):
"""Apply encoder."""
out_shape = (self.batch_size, seq_length, self.hidden_size)
prev_output = self.reshape(input_tensor, self.shape)
for layer_module in self.layers:
layer_output = layer_module(prev_output, attention_mask)
layer_output = layer_module(prev_output, attention_mask, seq_length)
prev_output = layer_output
prev_output = self.layer_preprocess(prev_output)
output = self.reshape(prev_output, self.out_shape)
output = self.reshape(prev_output, out_shape)
return output
@ -693,8 +690,6 @@ class DecoderCell(nn.Cell):
def __init__(self,
batch_size,
hidden_size=1024,
seq_length=128,
enc_seq_length=128,
num_attention_heads=12,
intermediate_size=4096,
attention_probs_dropout_prob=0.02,
@ -707,8 +702,6 @@ class DecoderCell(nn.Cell):
self.self_attention = SelfAttention(
batch_size=batch_size,
hidden_size=hidden_size,
from_seq_length=seq_length,
to_seq_length=seq_length,
num_attention_heads=num_attention_heads,
attention_probs_dropout_prob=attention_probs_dropout_prob,
use_one_hot_embeddings=use_one_hot_embeddings,
@ -719,8 +712,6 @@ class DecoderCell(nn.Cell):
self.cross_attention = SelfAttention(
batch_size=batch_size,
hidden_size=hidden_size,
from_seq_length=seq_length,
to_seq_length=enc_seq_length,
num_attention_heads=num_attention_heads,
attention_probs_dropout_prob=attention_probs_dropout_prob,
use_one_hot_embeddings=use_one_hot_embeddings,
@ -737,11 +728,12 @@ class DecoderCell(nn.Cell):
hidden_dropout_prob=hidden_dropout_prob,
compute_type=compute_type)
def construct(self, hidden_states, attention_mask, enc_states, enc_attention_mask):
def construct(self, hidden_states, attention_mask, enc_states, enc_attention_mask, seq_length, enc_seq_length):
# self-attention with ln, res
attention_output = self.self_attention(hidden_states, hidden_states, attention_mask)
attention_output = self.self_attention(hidden_states, hidden_states, attention_mask, seq_length, seq_length)
# cross-attention with ln, res
attention_output = self.cross_attention(attention_output, enc_states, enc_attention_mask)
attention_output = self.cross_attention(attention_output, enc_states, enc_attention_mask,
seq_length, enc_seq_length)
# feed forward with ln, res
output = self.feedforward(attention_output)
return output
@ -770,8 +762,6 @@ class TransformerDecoder(nn.Cell):
def __init__(self,
batch_size,
hidden_size,
seq_length,
enc_seq_length,
num_hidden_layers,
num_attention_heads=16,
intermediate_size=4096,
@ -788,8 +778,6 @@ class TransformerDecoder(nn.Cell):
for _ in range(num_hidden_layers):
layer = DecoderCell(batch_size=batch_size,
hidden_size=hidden_size,
seq_length=seq_length,
enc_seq_length=enc_seq_length,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
attention_probs_dropout_prob=attention_probs_dropout_prob,
@ -805,17 +793,21 @@ class TransformerDecoder(nn.Cell):
self.reshape = P.Reshape()
self.shape = (-1, hidden_size)
self.out_shape = (batch_size, seq_length, hidden_size)
self.hidden_size = hidden_size
self.batch_size = batch_size
def construct(self, input_tensor, attention_mask, enc_states, enc_attention_mask):
def construct(self, input_tensor, attention_mask, enc_states, enc_attention_mask, seq_length, enc_seq_length):
"""Apply decoder."""
out_shape = (self.batch_size, seq_length, self.hidden_size)
prev_output = self.reshape(input_tensor, self.shape)
for layer_module in self.layers:
layer_output = layer_module(prev_output, attention_mask, enc_states, enc_attention_mask)
layer_output = layer_module(prev_output, attention_mask, enc_states, enc_attention_mask,
seq_length, enc_seq_length)
prev_output = layer_output
prev_output = self.layer_preprocess(prev_output)
output = self.reshape(prev_output, self.out_shape)
output = self.reshape(prev_output, out_shape)
return output
@ -860,13 +852,11 @@ class PredLogProbs(nn.Cell):
"""
def __init__(self,
batch_size,
seq_length,
width,
compute_type=mstype.float32,
dtype=mstype.float32):
super(PredLogProbs, self).__init__()
self.batch_size = batch_size
self.seq_length = seq_length
self.width = width
self.compute_type = compute_type
self.dtype = dtype
@ -874,14 +864,16 @@ class PredLogProbs(nn.Cell):
self.reshape = P.Reshape()
self.matmul = P.MatMul(transpose_b=True)
self.log_softmax = nn.LogSoftmax(axis=-1)
self.shape_flat_sequence_tensor = (self.batch_size * self.seq_length, self.width)
self.cast = P.Cast()
def construct(self,
input_tensor,
output_weights):
output_weights,
seq_length):
"""Get log probs."""
input_tensor = self.reshape(input_tensor, self.shape_flat_sequence_tensor)
shape_flat_sequence_tensor = (self.batch_size * seq_length, self.width)
input_tensor = self.reshape(input_tensor, shape_flat_sequence_tensor)
input_tensor = self.cast(input_tensor, self.compute_type)
output_weights = self.cast(output_weights, self.compute_type)
@ -918,7 +910,6 @@ class TransformerDecoderStep(nn.Cell):
def __init__(self,
batch_size,
hidden_size,
enc_seq_length,
max_decode_length,
num_hidden_layers,
num_attention_heads=16,
@ -942,8 +933,6 @@ class TransformerDecoderStep(nn.Cell):
self.tfm_decoder = TransformerDecoder(
batch_size=batch_size,
hidden_size=hidden_size,
seq_length=-1, # -1 means length is not fixed
enc_seq_length=enc_seq_length,
num_attention_heads=num_attention_heads,
num_hidden_layers=num_hidden_layers,
intermediate_size=intermediate_size,
@ -966,7 +955,7 @@ class TransformerDecoderStep(nn.Cell):
self.cast_compute_type = CastWrapper(dst_type=compute_type)
def construct(self, input_ids, enc_states, enc_attention_mask):
def construct(self, input_ids, enc_states, enc_attention_mask, seq_length):
"""
Multi-layer transformer decoder step.
input_ids: [batch_size * beam_width]
@ -988,17 +977,23 @@ class TransformerDecoderStep(nn.Cell):
enc_attention_mask = enc_attention_mask[::, 0:input_len:1, ::]
# call TransformerDecoder
decoder_output = self.tfm_decoder(input_embedding, input_mask, enc_states, enc_attention_mask)
decoder_output = self.tfm_decoder(input_embedding, input_mask, enc_states, enc_attention_mask, -1, seq_length)
# take the last step
decoder_output = decoder_output[::, input_len-1:input_len:1, ::]
# projection and log_prob
log_probs = self.projection(decoder_output, embedding_tables)
log_probs = self.projection(decoder_output, embedding_tables, 1)
return log_probs
@constexpr
def convert_np_to_tensor_encoder(seq_length):
ones = np.ones(shape=(seq_length, seq_length))
return Tensor(np.tril(ones), dtype=mstype.float32)
class TransformerModel(nn.Cell):
"""
Transformer with encoder and decoder.
@ -1021,12 +1016,13 @@ class TransformerModel(nn.Cell):
self.input_mask_from_dataset = config.input_mask_from_dataset
self.batch_size = config.batch_size
self.seq_length = config.seq_length
self.hidden_size = config.hidden_size
self.num_hidden_layers = config.num_hidden_layers
self.embedding_size = config.hidden_size
self.last_idx = self.num_hidden_layers - 1
self.beam_width = config.beam_width
self.max_decode_length = config.max_decode_length
self.tfm_embedding_lookup = EmbeddingLookup(
vocab_size=config.vocab_size,
@ -1048,7 +1044,6 @@ class TransformerModel(nn.Cell):
self.tfm_encoder = TransformerEncoder(
batch_size=self.batch_size,
hidden_size=self.hidden_size,
seq_length=self.seq_length,
num_attention_heads=config.num_attention_heads,
num_hidden_layers=self.num_hidden_layers,
intermediate_size=config.intermediate_size,
@ -1062,15 +1057,12 @@ class TransformerModel(nn.Cell):
if is_training:
self.projection = PredLogProbs(
batch_size=self.batch_size,
seq_length=self.seq_length,
width=self.hidden_size,
compute_type=config.compute_type,
dtype=config.dtype)
self.tfm_decoder = TransformerDecoder(
batch_size=self.batch_size,
hidden_size=self.hidden_size,
seq_length=self.seq_length,
enc_seq_length=self.seq_length,
num_attention_heads=config.num_attention_heads,
num_hidden_layers=self.num_hidden_layers,
intermediate_size=config.intermediate_size,
@ -1083,14 +1075,12 @@ class TransformerModel(nn.Cell):
else:
self.projection = PredLogProbs(
batch_size=self.batch_size * config.beam_width,
seq_length=1,
width=self.hidden_size,
compute_type=config.compute_type,
dtype=config.dtype)
self.tfm_decoder = TransformerDecoderStep(
batch_size=self.batch_size * config.beam_width,
hidden_size=self.hidden_size,
enc_seq_length=self.seq_length,
max_decode_length=config.max_decode_length,
num_hidden_layers=config.num_hidden_layers,
num_attention_heads=config.num_attention_heads,
@ -1113,24 +1103,24 @@ class TransformerModel(nn.Cell):
length_penalty_weight=config.length_penalty_weight,
max_decode_length=config.max_decode_length)
self.tfm_decoder.add_flags(loop_can_unroll=True)
self.tile_beam = TileBeam(beam_width=self.beam_width)
ones = np.ones(shape=(self.batch_size, self.max_decode_length))
self.encdec_mask = Tensor(ones, mstype.float32)
self.cast = P.Cast()
self.dtype = config.dtype
self.cast_compute_type = CastWrapper(dst_type=config.compute_type)
self.expand = P.ExpandDims()
self.multiply = P.Mul()
self.shape = P.Shape()
self._create_attention_mask_from_input_mask = CreateAttentionMaskFromInputMask()
if is_training:
ones = np.ones(shape=(self.seq_length, self.seq_length))
self.future_mask = Tensor(np.tril(ones), dtype=mstype.float32)
else:
self.tile_beam = TileBeam(beam_width=config.beam_width)
ones = np.ones(shape=(config.batch_size, config.max_decode_length))
self.encdec_mask = Tensor(ones, dtype=mstype.float32)
def construct(self, source_ids, source_mask, target_ids=None, target_mask=None):
"""Transformer with encoder and decoder."""
seq_length = self.shape(source_ids)[1]
# process source sentence
src_word_embeddings, embedding_tables = self.tfm_embedding_lookup(source_ids)
src_embedding_output = self.tfm_embedding_postprocessor_for_encoder(src_word_embeddings)
@ -1138,21 +1128,24 @@ class TransformerModel(nn.Cell):
enc_attention_mask = self._create_attention_mask_from_input_mask(source_mask)
# transformer encoder
encoder_output = self.tfm_encoder(self.cast_compute_type(src_embedding_output),
self.cast_compute_type(enc_attention_mask))
self.cast_compute_type(enc_attention_mask),
seq_length)
if self.is_training:
future_mask = convert_np_to_tensor_encoder(seq_length)
# process target sentence
tgt_word_embeddings, _ = self.tfm_embedding_lookup(target_ids)
tgt_embedding_output = self.tfm_embedding_postprocessor_for_decoder(tgt_word_embeddings)
# attention mask [batch_size, seq_length, seq_length]
tgt_attention_mask = self._create_attention_mask_from_input_mask(target_mask)
tgt_attention_mask = self.multiply(tgt_attention_mask, self.expand(self.future_mask, 0))
tgt_attention_mask = self.multiply(tgt_attention_mask, self.expand(future_mask, 0))
# transformer decoder
decoder_output = self.tfm_decoder(self.cast_compute_type(tgt_embedding_output),
self.cast_compute_type(tgt_attention_mask),
encoder_output, enc_attention_mask)
encoder_output, enc_attention_mask,
seq_length, seq_length)
# calculate logits and log_probs
log_probs = self.projection(decoder_output, embedding_tables)
log_probs = self.projection(decoder_output, embedding_tables, seq_length)
ret = log_probs
else:
beam_encoder_output = self.tile_beam(encoder_output)

View File

@ -105,6 +105,9 @@ def argparse_init():
parser.add_argument("--save_checkpoint_path", type=str, default="./checkpoint/", help="Save checkpoint file path, "
"default is ./checkpoint/")
parser.add_argument("--data_path", type=str, default="", help="Data path, it is better to use absolute path")
parser.add_argument("--bucket_boundaries", type=list, default=[16, 32, 48, 64, 128], help="sequence length for "
"different bucket")
return parser
def run_transformer_train():
@ -129,7 +132,8 @@ def run_transformer_train():
dataset = create_transformer_dataset(epoch_count=1, rank_size=device_num,
rank_id=rank_id, do_shuffle=args.do_shuffle,
enable_data_sink=args.enable_data_sink,
dataset_path=args.data_path)
dataset_path=args.data_path,
bucket_boundaries=args.bucket_boundaries)
netwithloss = TransformerNetworkWithLoss(transformer_net_cfg, True)

View File

@ -24,12 +24,13 @@ from mindspore.nn.optim import Adam
from mindspore.train.model import Model
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.train.callback import Callback
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.c_transforms as deC
from mindspore import context
from model_zoo.official.nlp.transformer.src.transformer_model import TransformerConfig
from model_zoo.official.nlp.transformer.src.transformer_for_train import TransformerNetworkWithLoss, \
TransformerTrainOneStepWithLossScaleCell
from model_zoo.official.nlp.transformer.src.config import cfg
from model_zoo.official.nlp.transformer.src.dataset import create_transformer_dataset
from model_zoo.official.nlp.transformer.src.config import cfg, transformer_net_cfg
from model_zoo.official.nlp.transformer.src.lr_schedule import create_dynamic_lr
DATA_DIR = ["/home/workspace/mindspore_dataset/transformer/test-mindrecord"]
@ -76,6 +77,24 @@ def get_config(version='base', batch_size=1):
transformer_cfg = TransformerConfig(batch_size=batch_size)
return transformer_cfg
def load_test_data(batch_size=1, data_file=None):
"""Load test dataset."""
ds = de.MindDataset(data_file,
columns_list=["source_eos_ids", "source_eos_mask",
"target_sos_ids", "target_sos_mask",
"target_eos_ids", "target_eos_mask"],
shuffle=False)
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="source_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="source_eos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_mask")
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
class ModelCallback(Callback):
def __init__(self):
super(ModelCallback, self).__init__()
@ -120,10 +139,7 @@ def test_transformer():
batch_size = 96
epoch_size = 3
config = get_config(version=version, batch_size=batch_size)
dataset = create_transformer_dataset(epoch_count=1,
do_shuffle="false",
enable_data_sink="false",
dataset_path=DATA_DIR)
dataset = load_test_data(batch_size=transformer_net_cfg.batch_size, data_file=DATA_DIR)
netwithloss = TransformerNetworkWithLoss(config, True)