forked from mindspore-Ecosystem/mindspore
modify format
This commit is contained in:
parent
7f106390a3
commit
f8549bb1f1
|
@ -16,4 +16,4 @@ mindspore.dataset.text.SentencePieceTokenizer
|
|||
|
||||
异常:
|
||||
- **TypeError** - 参数 `mode` 的类型不是字符串或 :class:`mindspore.dataset.text.SentencePieceVocab` 。
|
||||
- **TypeError** - 参数 `out_type` 的类型不是 :class::`mindspore.dataset.text.SPieceTokenizerOutType` 。
|
||||
- **TypeError** - 参数 `out_type` 的类型不是 :class:`mindspore.dataset.text.SPieceTokenizerOutType` 。
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
- **optimizer** (Cell) - 用于更新网络权重的优化器。如果 `optimizer` 为None, `network` 中需要进行反向传播和网络权重更新。默认值:None。
|
||||
- **metrics** (Union[dict, set]) - 用于模型评估的一组评价函数。例如:{'accuracy', 'recall'}。默认值:None。
|
||||
- **eval_network** (Cell) - 用于评估的神经网络。未定义情况下,`Model` 会使用 `network` 和 `loss_fn` 封装一个 `eval_network` 。默认值:None。
|
||||
- **eval_indexes** (list) - 在定义 `eval_network` 的情况下使用。如果 `eval_indexes` 为默认值None,`Model` 会将 `eval_network` 的所有输出传给 `metrics` 。如果配置 `eval_indexes` ,必须包含三个元素,分别为损失值、预测值和标签在 `eval_network` 输出中的位置,此时,损失值将传给损失评价函数,预测值和标签将传给其他评价函数。推荐使用评价函数的 `mindspore.train.Metric.set_indexes` 代替 `eval_indexes` 。默认值:None。
|
||||
- **eval_indexes** (list) - 在定义 `eval_network` 的情况下使用。如果 `eval_indexes` 为默认值None,`Model` 会将 `eval_network` 的所有输出传给 `metrics` 。如果配置 `eval_indexes` ,必须包含三个元素,分别为损失值、预测值和标签在 `eval_network` 输出中的位置,此时,损失值将传给损失评价函数,预测值和标签将传给其他评价函数。推荐使用评价函数的 :func:`mindspore.train.Metric.set_indexes` 代替 `eval_indexes` 。默认值:None。
|
||||
- **amp_level** (str) - `mindspore.amp.build_train_network` 的可选参数 `level` , `level` 为混合精度等级,该参数支持["O0", "O1", "O2", "O3", "auto"]。默认值:"O0"。
|
||||
|
||||
- "O0": 不变化。
|
||||
|
|
|
@ -985,7 +985,7 @@ if platform.system().lower() != 'windows':
|
|||
class CaseFold(TextTensorOperation):
|
||||
"""
|
||||
Apply case fold operation on UTF-8 string tensor, which is aggressive that can convert more characters into
|
||||
lower case than :func:`str.lower` . For supported normalization forms, please refer to
|
||||
lower case than :code:`str.lower` . For supported normalization forms, please refer to
|
||||
`ICU_Normalizer2 <https://unicode-org.github.io/icu-docs/apidoc/released/icu4c/classicu_1_1Normalizer2.html>`_ .
|
||||
|
||||
Note:
|
||||
|
|
|
@ -2563,7 +2563,7 @@ def atan2(input, other):
|
|||
The data type should be one of the following types: float16, float32, float64
|
||||
other (Tensor, Number.number): The input tensor or scalar. It has the same shape with `input`.
|
||||
|
||||
Note:
|
||||
.. note::
|
||||
At least one of the input args should be Tensor.
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -125,7 +125,7 @@ class Model:
|
|||
three elements: the positions of loss value, predicted value and label in outputs of the
|
||||
`eval_network`. In this case, the loss value will be passed to the `Loss` metric, the
|
||||
predicted value and label will be passed to other metrics.
|
||||
:func:`mindspore.train.metric.set_indexes` is recommended instead of `eval_indexes`.
|
||||
:func:`mindspore.train.Metric.set_indexes` is recommended instead of `eval_indexes`.
|
||||
Default: None.
|
||||
amp_level (str): Option for argument `level` in :func:`mindspore.amp.build_train_network`, level for mixed
|
||||
precision training. Supports ["O0", "O1", "O2", "O3", "auto"]. Default: "O0".
|
||||
|
|
Loading…
Reference in New Issue