forked from mindspore-Ecosystem/mindspore
upload resnet101 scripts
This commit is contained in:
parent
69f6a1d6bd
commit
f1cec60dc8
|
@ -0,0 +1,139 @@
|
||||||
|
# ResNet101 Example
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
This is an example of training ResNet101 with ImageNet dataset in MindSpore.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||||
|
|
||||||
|
- Download the dataset [ImageNet](http://image-net.org/download).
|
||||||
|
|
||||||
|
> Unzip the ImageNet dataset to any path you want, the folder should include train and eval dataset as follows:
|
||||||
|
|
||||||
|
```
|
||||||
|
.
|
||||||
|
└─dataset
|
||||||
|
├─ilsvrc
|
||||||
|
│
|
||||||
|
└─validation_preprocess
|
||||||
|
```
|
||||||
|
|
||||||
|
## Example structure
|
||||||
|
|
||||||
|
```shell
|
||||||
|
.
|
||||||
|
├── crossentropy.py # CrossEntropy loss function
|
||||||
|
├── var_init.py # weight initial
|
||||||
|
├── config.py # parameter configuration
|
||||||
|
├── dataset.py # data preprocessing
|
||||||
|
├── eval.py # eval net
|
||||||
|
├── lr_generator.py # generate learning rate
|
||||||
|
├── run_distribute_train.sh # launch distributed training(8p)
|
||||||
|
├── run_infer.sh # launch evaluating
|
||||||
|
├── run_standalone_train.sh # launch standalone training(1p)
|
||||||
|
└── train.py # train net
|
||||||
|
```
|
||||||
|
|
||||||
|
## Parameter configuration
|
||||||
|
|
||||||
|
Parameters for both training and evaluating can be set in config.py.
|
||||||
|
|
||||||
|
```
|
||||||
|
"class_num": 1001, # dataset class number
|
||||||
|
"batch_size": 32, # batch size of input tensor
|
||||||
|
"loss_scale": 1024, # loss scale
|
||||||
|
"momentum": 0.9, # momentum optimizer
|
||||||
|
"weight_decay": 1e-4, # weight decay
|
||||||
|
"epoch_size": 120, # epoch sizes for training
|
||||||
|
"buffer_size": 1000, # number of queue size in data preprocessing
|
||||||
|
"image_height": 224, # image height
|
||||||
|
"image_width": 224, # image width
|
||||||
|
"save_checkpoint": True, # whether save checkpoint or not
|
||||||
|
"save_checkpoint_steps": 500, # the step interval between two checkpoints. By default, the last checkpoint will be saved after the last step
|
||||||
|
"keep_checkpoint_max": 40, # only keep the last keep_checkpoint_max checkpoint
|
||||||
|
"save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
|
||||||
|
"lr_init": 0.01, # initial learning rate
|
||||||
|
"lr_end": 0.00001, # final learning rate
|
||||||
|
"lr_max": 0.1, # maximum learning rate
|
||||||
|
"warmup_epochs": 0, # number of warmup epoch
|
||||||
|
"lr_decay_mode": "cosine" # decay mode for generating learning rate
|
||||||
|
"label_smooth": 1, # label_smooth
|
||||||
|
"label_smooth_factor": 0.1, # label_smooth_factor
|
||||||
|
"lr": 0.1 # base learning rate
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running the example
|
||||||
|
|
||||||
|
### Train
|
||||||
|
|
||||||
|
#### Usage
|
||||||
|
|
||||||
|
```
|
||||||
|
# distributed training
|
||||||
|
sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]
|
||||||
|
|
||||||
|
# standalone training
|
||||||
|
sh run_standalone_train.sh [DATASET_PATH]
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Launch
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# distributed training example(8p)
|
||||||
|
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
|
||||||
|
|
||||||
|
# standalone training example(1p)
|
||||||
|
sh run_standalone_train.sh dataset/ilsvrc
|
||||||
|
```
|
||||||
|
|
||||||
|
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
|
||||||
|
|
||||||
|
#### Result
|
||||||
|
|
||||||
|
Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the followings in log.
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
# distribute training result(8p)
|
||||||
|
epoch: 1 step: 5004, loss is 4.805483
|
||||||
|
epoch: 2 step: 5004, loss is 3.2121816
|
||||||
|
epoch: 3 step: 5004, loss is 3.429647
|
||||||
|
epoch: 4 step: 5004, loss is 3.3667371
|
||||||
|
epoch: 5 step: 5004, loss is 3.1718972
|
||||||
|
...
|
||||||
|
epoch: 67 step: 5004, loss is 2.2768745
|
||||||
|
epoch: 68 step: 5004, loss is 1.7223864
|
||||||
|
epoch: 69 step: 5004, loss is 2.0665488
|
||||||
|
epoch: 70 step: 5004, loss is 1.8717369
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
### Infer
|
||||||
|
|
||||||
|
#### Usage
|
||||||
|
|
||||||
|
```
|
||||||
|
# infer
|
||||||
|
sh run_infer.sh [VALIDATION_DATASET_PATH] [CHECKPOINT_PATH]
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Launch
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# infer with checkpoint
|
||||||
|
sh run_infer.sh dataset/validation_preprocess/ train_parallel0/resnet-120_5004.ckpt
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
> checkpoint can be produced in training process.
|
||||||
|
|
||||||
|
|
||||||
|
#### Result
|
||||||
|
|
||||||
|
Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log.
|
||||||
|
|
||||||
|
```
|
||||||
|
result: {'top_5_accuracy': 0.9429417413572343, 'top_1_accuracy': 0.7853513124199744} ckpt=train_parallel0/resnet-120_5004.ckpt
|
||||||
|
```
|
|
@ -0,0 +1,42 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
network config setting, will be used in train.py and eval.py
|
||||||
|
"""
|
||||||
|
from easydict import EasyDict as ed
|
||||||
|
|
||||||
|
config = ed({
|
||||||
|
"class_num": 1001,
|
||||||
|
"batch_size": 32,
|
||||||
|
"loss_scale": 1024,
|
||||||
|
"momentum": 0.9,
|
||||||
|
"weight_decay": 1e-4,
|
||||||
|
"epoch_size": 120,
|
||||||
|
"buffer_size": 1000,
|
||||||
|
"image_height": 224,
|
||||||
|
"image_width": 224,
|
||||||
|
"save_checkpoint": True,
|
||||||
|
"save_checkpoint_steps": 500,
|
||||||
|
"keep_checkpoint_max": 40,
|
||||||
|
"save_checkpoint_path": "./",
|
||||||
|
"lr_init": 0.01,
|
||||||
|
"lr_end": 0.00001,
|
||||||
|
"lr_max": 0.1,
|
||||||
|
"warmup_epochs": 0,
|
||||||
|
"lr_decay_mode": "cosine",
|
||||||
|
"label_smooth": 1,
|
||||||
|
"label_smooth_factor": 0.1,
|
||||||
|
"lr": 0.1
|
||||||
|
})
|
|
@ -0,0 +1,36 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
from mindspore.nn.loss.loss import _Loss
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
from mindspore.ops import functional as F
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
import mindspore.nn as nn
|
||||||
|
|
||||||
|
"""define loss function for network"""
|
||||||
|
class CrossEntropy(_Loss):
|
||||||
|
def __init__(self, smooth_factor=0., num_classes=1001):
|
||||||
|
super(CrossEntropy, self).__init__()
|
||||||
|
self.onehot = P.OneHot()
|
||||||
|
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||||
|
self.off_value = Tensor(1.0 * smooth_factor / (num_classes -1), mstype.float32)
|
||||||
|
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
||||||
|
self.mean = P.ReduceMean(False)
|
||||||
|
|
||||||
|
def construct(self, logit, label):
|
||||||
|
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||||
|
loss = self.ce(logit, one_hot_label)
|
||||||
|
loss = self.mean(loss, 0)
|
||||||
|
return loss
|
|
@ -0,0 +1,89 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
create train or eval dataset.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
import mindspore.dataset.engine as de
|
||||||
|
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||||
|
import mindspore.dataset.transforms.c_transforms as C2
|
||||||
|
from config import config
|
||||||
|
|
||||||
|
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
||||||
|
"""
|
||||||
|
create a train or evaluate dataset
|
||||||
|
Args:
|
||||||
|
dataset_path(string): the path of dataset.
|
||||||
|
do_train(bool): whether dataset is used for train or eval.
|
||||||
|
repeat_num(int): the repeat times of dataset. Default: 1
|
||||||
|
batch_size(int): the batch size of dataset. Default: 32
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dataset
|
||||||
|
"""
|
||||||
|
device_num = int(os.getenv("RANK_SIZE"))
|
||||||
|
rank_id = int(os.getenv("RANK_ID"))
|
||||||
|
|
||||||
|
if device_num == 1:
|
||||||
|
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||||
|
else:
|
||||||
|
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||||
|
num_shards=device_num, shard_id=rank_id)
|
||||||
|
resize_height = 224
|
||||||
|
rescale = 1.0 / 255.0
|
||||||
|
shift = 0.0
|
||||||
|
|
||||||
|
# define map operations
|
||||||
|
decode_op = C.Decode()
|
||||||
|
|
||||||
|
random_resize_crop_op = C.RandomResizedCrop(resize_height, (0.08, 1.0), (0.75, 1.33), max_attempts=100)
|
||||||
|
horizontal_flip_op = C.RandomHorizontalFlip(rank_id / (rank_id + 1))
|
||||||
|
resize_op_256 = C.Resize((256, 256))
|
||||||
|
center_crop = C.CenterCrop(224)
|
||||||
|
rescale_op = C.Rescale(rescale, shift)
|
||||||
|
normalize_op = C.Normalize((0.475, 0.451, 0.392), (0.275, 0.267, 0.278))
|
||||||
|
changeswap_op = C.HWC2CHW()
|
||||||
|
|
||||||
|
trans=[]
|
||||||
|
if do_train:
|
||||||
|
trans = [decode_op,
|
||||||
|
random_resize_crop_op,
|
||||||
|
horizontal_flip_op,
|
||||||
|
rescale_op,
|
||||||
|
normalize_op,
|
||||||
|
changeswap_op]
|
||||||
|
|
||||||
|
else:
|
||||||
|
trans = [decode_op,
|
||||||
|
resize_op_256,
|
||||||
|
center_crop,
|
||||||
|
rescale_op,
|
||||||
|
normalize_op,
|
||||||
|
changeswap_op]
|
||||||
|
|
||||||
|
type_cast_op = C2.TypeCast(mstype.int32)
|
||||||
|
|
||||||
|
ds = ds.map(input_columns="image", operations=trans)
|
||||||
|
ds = ds.map(input_columns="label", operations=type_cast_op)
|
||||||
|
|
||||||
|
# apply shuffle operations
|
||||||
|
ds = ds.shuffle(buffer_size=config.buffer_size)
|
||||||
|
# apply batch operations
|
||||||
|
ds = ds.batch(batch_size, drop_remainder=True)
|
||||||
|
# apply dataset repeat operation
|
||||||
|
ds = ds.repeat(repeat_num)
|
||||||
|
|
||||||
|
return ds
|
|
@ -0,0 +1,84 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
eval.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
from dataset import create_dataset
|
||||||
|
from config import config
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore.model_zoo.resnet import resnet101
|
||||||
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||||
|
from mindspore.train.model import Model, ParallelMode
|
||||||
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||||
|
import mindspore.dataset.engine as de
|
||||||
|
from mindspore.communication.management import init
|
||||||
|
from crossentropy import CrossEntropy
|
||||||
|
|
||||||
|
random.seed(1)
|
||||||
|
np.random.seed(1)
|
||||||
|
de.config.set_seed(1)
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Image classification')
|
||||||
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||||
|
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||||
|
parser.add_argument('--do_train', type=bool, default=False, help='Do train or not.')
|
||||||
|
parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.')
|
||||||
|
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||||
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
|
||||||
|
device_id = int(os.getenv('DEVICE_ID'))
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
|
||||||
|
context.set_context(enable_task_sink=True)
|
||||||
|
context.set_context(enable_loop_sink=True)
|
||||||
|
context.set_context(enable_mem_reuse=True)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
if args_opt.do_eval:
|
||||||
|
context.set_context(enable_hccl=False)
|
||||||
|
else:
|
||||||
|
if args_opt.run_distribute:
|
||||||
|
context.set_context(enable_hccl=True)
|
||||||
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||||
|
mirror_mean=True, parameter_broadcast=True)
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([140])
|
||||||
|
init()
|
||||||
|
else:
|
||||||
|
context.set_context(enable_hccl=False)
|
||||||
|
|
||||||
|
epoch_size = config.epoch_size
|
||||||
|
net = resnet101(class_num=config.class_num)
|
||||||
|
|
||||||
|
if not config.label_smooth:
|
||||||
|
config.label_smooth_factor = 0.0
|
||||||
|
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||||
|
|
||||||
|
if args_opt.do_eval:
|
||||||
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size)
|
||||||
|
step_size = dataset.get_dataset_size()
|
||||||
|
|
||||||
|
if args_opt.checkpoint_path:
|
||||||
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||||
|
load_param_into_net(net, param_dict)
|
||||||
|
net.set_train(False)
|
||||||
|
|
||||||
|
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
|
||||||
|
res = model.eval(dataset)
|
||||||
|
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
|
@ -0,0 +1,113 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""learning rate generator"""
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
|
||||||
|
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
|
||||||
|
lr = float(init_lr) + lr_inc * current_step
|
||||||
|
return lr
|
||||||
|
|
||||||
|
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
|
||||||
|
"""
|
||||||
|
generate learning rate array with cosine
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lr(float): base learning rate
|
||||||
|
steps_per_epoch(int): steps size of one epoch
|
||||||
|
warmup_epochs(int): number of warmup epochs
|
||||||
|
max_epoch(int): total epochs of training
|
||||||
|
Returns:
|
||||||
|
np.array, learning rate array
|
||||||
|
"""
|
||||||
|
base_lr = lr
|
||||||
|
warmup_init_lr = 0
|
||||||
|
total_steps = int(max_epoch * steps_per_epoch)
|
||||||
|
warmup_steps = int(warmup_epochs * steps_per_epoch)
|
||||||
|
decay_steps = total_steps - warmup_steps
|
||||||
|
|
||||||
|
lr_each_step = []
|
||||||
|
for i in range(total_steps):
|
||||||
|
if i < warmup_steps:
|
||||||
|
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
|
||||||
|
else:
|
||||||
|
linear_decay = (total_steps - i) / decay_steps
|
||||||
|
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
|
||||||
|
decayed = linear_decay * cosine_decay + 0.00001
|
||||||
|
lr = base_lr * decayed
|
||||||
|
lr_each_step.append(lr)
|
||||||
|
return np.array(lr_each_step).astype(np.float32)
|
||||||
|
|
||||||
|
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
||||||
|
"""
|
||||||
|
generate learning rate array
|
||||||
|
|
||||||
|
Args:
|
||||||
|
global_step(int): total steps of the training
|
||||||
|
lr_init(float): init learning rate
|
||||||
|
lr_end(float): end learning rate
|
||||||
|
lr_max(float): max learning rate
|
||||||
|
warmup_epochs(int): number of warmup epochs
|
||||||
|
total_epochs(int): total epoch of training
|
||||||
|
steps_per_epoch(int): steps of one epoch
|
||||||
|
lr_decay_mode(string): learning rate decay mode, including steps, poly or default
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
np.array, learning rate array
|
||||||
|
"""
|
||||||
|
lr_each_step = []
|
||||||
|
total_steps = steps_per_epoch * total_epochs
|
||||||
|
warmup_steps = steps_per_epoch * warmup_epochs
|
||||||
|
if lr_decay_mode == 'steps':
|
||||||
|
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
|
||||||
|
for i in range(total_steps):
|
||||||
|
if i < decay_epoch_index[0]:
|
||||||
|
lr = lr_max
|
||||||
|
elif i < decay_epoch_index[1]:
|
||||||
|
lr = lr_max * 0.1
|
||||||
|
elif i < decay_epoch_index[2]:
|
||||||
|
lr = lr_max * 0.01
|
||||||
|
else:
|
||||||
|
lr = lr_max * 0.001
|
||||||
|
lr_each_step.append(lr)
|
||||||
|
elif lr_decay_mode == 'poly':
|
||||||
|
if warmup_steps != 0:
|
||||||
|
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
||||||
|
else:
|
||||||
|
inc_each_step = 0
|
||||||
|
for i in range(total_steps):
|
||||||
|
if i < warmup_steps:
|
||||||
|
lr = float(lr_init) + inc_each_step * float(i)
|
||||||
|
else:
|
||||||
|
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
|
||||||
|
lr = float(lr_max) * base * base
|
||||||
|
if lr < 0.0:
|
||||||
|
lr = 0.0
|
||||||
|
lr_each_step.append(lr)
|
||||||
|
else:
|
||||||
|
for i in range(total_steps):
|
||||||
|
if i < warmup_steps:
|
||||||
|
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
|
||||||
|
else:
|
||||||
|
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
|
||||||
|
lr_each_step.append(lr)
|
||||||
|
|
||||||
|
current_step = global_step
|
||||||
|
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||||
|
learning_rate = lr_each_step[current_step:]
|
||||||
|
|
||||||
|
return learning_rate
|
|
@ -0,0 +1,54 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [ $# != 2 ]
|
||||||
|
then
|
||||||
|
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $1 ]
|
||||||
|
then
|
||||||
|
echo "error: DMINDSPORE_HCCL_CONFIG_PATH=$1 is not a file"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d $2 ]
|
||||||
|
then
|
||||||
|
echo "error: DATASET_PATH=$2 is not a directory"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
ulimit -u unlimited
|
||||||
|
export DEVICE_NUM=8
|
||||||
|
export RANK_SIZE=8
|
||||||
|
export MINDSPORE_HCCL_CONFIG_PATH=$1
|
||||||
|
export RANK_TABLE_FILE=$1
|
||||||
|
|
||||||
|
for((i=0; i<${DEVICE_NUM}; i++))
|
||||||
|
do
|
||||||
|
export DEVICE_ID=$i
|
||||||
|
export RANK_ID=$i
|
||||||
|
rm -rf ./train_parallel$i
|
||||||
|
mkdir ./train_parallel$i
|
||||||
|
cp *.py ./train_parallel$i
|
||||||
|
cp *.sh ./train_parallel$i
|
||||||
|
cd ./train_parallel$i || exit
|
||||||
|
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||||
|
env > env.log
|
||||||
|
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$2 &> log &
|
||||||
|
cd ..
|
||||||
|
done
|
|
@ -0,0 +1,52 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [ $# != 2 ]
|
||||||
|
then
|
||||||
|
echo "Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d $1 ]
|
||||||
|
then
|
||||||
|
echo "error: DATASET_PATH=$1 is not a directory"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $2 ]
|
||||||
|
then
|
||||||
|
echo "error: CHECKPOINT_PATH=$2 is not a file"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
ulimit -u unlimited
|
||||||
|
export DEVICE_NUM=1
|
||||||
|
export DEVICE_ID=0
|
||||||
|
export RANK_SIZE=$DEVICE_NUM
|
||||||
|
export RANK_ID=0
|
||||||
|
|
||||||
|
if [ -d "infer" ];
|
||||||
|
then
|
||||||
|
rm -rf ./infer
|
||||||
|
fi
|
||||||
|
mkdir ./infer
|
||||||
|
cp *.py ./infer
|
||||||
|
cp *.sh ./infer
|
||||||
|
cd ./infer || exit
|
||||||
|
env > env.log
|
||||||
|
echo "start infering for device $DEVICE_ID"
|
||||||
|
python eval.py --do_eval=True --dataset_path=$1 --checkpoint_path=$2 &> log &
|
||||||
|
cd ..
|
|
@ -0,0 +1,46 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [ $# != 1 ]
|
||||||
|
then
|
||||||
|
echo "Usage: sh run_standalone_train.sh [DATASET_PATH]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d $1 ]
|
||||||
|
then
|
||||||
|
echo "error: DATASET_PATH=$1 is not a directory"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
ulimit -u unlimited
|
||||||
|
export DEVICE_NUM=1
|
||||||
|
export DEVICE_ID=0
|
||||||
|
export RANK_ID=0
|
||||||
|
export RANK_SIZE=1
|
||||||
|
|
||||||
|
if [ -d "train" ];
|
||||||
|
then
|
||||||
|
rm -rf ./train
|
||||||
|
fi
|
||||||
|
mkdir ./train
|
||||||
|
cp *.py ./train
|
||||||
|
cp *.sh ./train
|
||||||
|
cd ./train || exit
|
||||||
|
echo "start training for device $DEVICE_ID"
|
||||||
|
env > env.log
|
||||||
|
python train.py --do_train=True --dataset_path=$1 &> log &
|
||||||
|
cd ..
|
|
@ -0,0 +1,113 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""train_imagenet."""
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
from dataset import create_dataset
|
||||||
|
from lr_generator import get_lr
|
||||||
|
from config import config
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.model_zoo.resnet import resnet101
|
||||||
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||||
|
from mindspore.nn.optim.momentum import Momentum
|
||||||
|
from mindspore.train.model import Model, ParallelMode
|
||||||
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||||
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||||
|
import mindspore.dataset.engine as de
|
||||||
|
from mindspore.communication.management import init
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from crossentropy import CrossEntropy
|
||||||
|
from var_init import default_recurisive_init, KaimingNormal
|
||||||
|
from mindspore.common import initializer as weight_init
|
||||||
|
|
||||||
|
random.seed(1)
|
||||||
|
np.random.seed(1)
|
||||||
|
de.config.set_seed(1)
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Image classification')
|
||||||
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||||
|
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||||
|
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
|
||||||
|
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
|
||||||
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
|
||||||
|
device_id = int(os.getenv('DEVICE_ID'))
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
|
||||||
|
context.set_context(enable_task_sink=True)
|
||||||
|
context.set_context(enable_loop_sink=True)
|
||||||
|
context.set_context(enable_mem_reuse=True)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
if args_opt.do_eval:
|
||||||
|
context.set_context(enable_hccl=False)
|
||||||
|
else:
|
||||||
|
if args_opt.run_distribute:
|
||||||
|
context.set_context(enable_hccl=True)
|
||||||
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||||
|
mirror_mean=True, parameter_broadcast=True)
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([140])
|
||||||
|
init()
|
||||||
|
else:
|
||||||
|
context.set_context(enable_hccl=False)
|
||||||
|
|
||||||
|
epoch_size = config.epoch_size
|
||||||
|
net = resnet101(class_num=config.class_num)
|
||||||
|
|
||||||
|
# weight init
|
||||||
|
default_recurisive_init(net)
|
||||||
|
for name, cell in net.cells_and_names():
|
||||||
|
if isinstance(cell, nn.Conv2d):
|
||||||
|
cell.weight.default_input = weight_init.initializer(KaimingNormal(a=math.sqrt(5),
|
||||||
|
mode='fan_out', nonlinearity='relu'),
|
||||||
|
cell.weight.default_input.shape(),
|
||||||
|
cell.weight.default_input.dtype())
|
||||||
|
|
||||||
|
if not config.label_smooth:
|
||||||
|
config.label_smooth_factor = 0.0
|
||||||
|
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||||
|
|
||||||
|
if args_opt.do_train:
|
||||||
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
|
||||||
|
repeat_num=epoch_size, batch_size=config.batch_size)
|
||||||
|
step_size = dataset.get_dataset_size()
|
||||||
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||||
|
|
||||||
|
# learning rate strategy
|
||||||
|
if config.lr_decay_mode == 'cosine':
|
||||||
|
lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size))
|
||||||
|
else:
|
||||||
|
lr = Tensor(get_lr(global_step=0, lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
|
||||||
|
warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size,
|
||||||
|
lr_decay_mode='poly'))
|
||||||
|
|
||||||
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||||
|
config.weight_decay, config.loss_scale)
|
||||||
|
|
||||||
|
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', keep_batchnorm_fp32=False, loss_scale_manager=loss_scale, metrics={'acc'})
|
||||||
|
|
||||||
|
time_cb = TimeMonitor(data_size=step_size)
|
||||||
|
loss_cb = LossMonitor()
|
||||||
|
cb = [time_cb, loss_cb]
|
||||||
|
if config.save_checkpoint:
|
||||||
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
|
||||||
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||||
|
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
|
||||||
|
cb += [ckpt_cb]
|
||||||
|
model.train(epoch_size, dataset, callbacks=cb)
|
|
@ -0,0 +1,183 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""weight initial"""
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import initializer as init
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_gain(nonlinearity, param=None):
|
||||||
|
r"""Return the recommended gain value for the given nonlinearity function.
|
||||||
|
The values are as follows:
|
||||||
|
|
||||||
|
================= ====================================================
|
||||||
|
nonlinearity gain
|
||||||
|
================= ====================================================
|
||||||
|
Linear / Identity :math:`1`
|
||||||
|
Conv{1,2,3}D :math:`1`
|
||||||
|
Sigmoid :math:`1`
|
||||||
|
Tanh :math:`\frac{5}{3}`
|
||||||
|
ReLU :math:`\sqrt{2}`
|
||||||
|
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
|
||||||
|
================= ====================================================
|
||||||
|
|
||||||
|
Args:
|
||||||
|
nonlinearity: the non-linear function (`nn.functional` name)
|
||||||
|
param: optional parameter for the non-linear function
|
||||||
|
|
||||||
|
"""
|
||||||
|
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
|
||||||
|
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
||||||
|
return 1
|
||||||
|
elif nonlinearity == 'tanh':
|
||||||
|
return 5.0 / 3
|
||||||
|
elif nonlinearity == 'relu':
|
||||||
|
return math.sqrt(2.0)
|
||||||
|
elif nonlinearity == 'leaky_relu':
|
||||||
|
if param is None:
|
||||||
|
negative_slope = 0.01
|
||||||
|
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
|
||||||
|
# True/False are instances of int, hence check above
|
||||||
|
negative_slope = param
|
||||||
|
else:
|
||||||
|
raise ValueError("negative_slope {} not a valid number".format(param))
|
||||||
|
return math.sqrt(2.0 / (1 + negative_slope ** 2))
|
||||||
|
else:
|
||||||
|
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
|
||||||
|
|
||||||
|
def _calculate_correct_fan(array, mode):
|
||||||
|
mode = mode.lower()
|
||||||
|
valid_modes = ['fan_in', 'fan_out']
|
||||||
|
if mode not in valid_modes:
|
||||||
|
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
|
||||||
|
|
||||||
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(array)
|
||||||
|
return fan_in if mode == 'fan_in' else fan_out
|
||||||
|
|
||||||
|
|
||||||
|
def kaiming_uniform_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||||
|
r"""Fills the input `Tensor` with values according to the method
|
||||||
|
described in `Delving deep into rectifiers: Surpassing human-level
|
||||||
|
performance on ImageNet classification` - He, K. et al. (2015), using a
|
||||||
|
uniform distribution. The resulting tensor will have values sampled from
|
||||||
|
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}
|
||||||
|
|
||||||
|
Also known as He initialization.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
array: an n-dimensional `tensor`
|
||||||
|
a: the negative slope of the rectifier used after this layer (only
|
||||||
|
used with ``'leaky_relu'``)
|
||||||
|
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
|
||||||
|
preserves the magnitude of the variance of the weights in the
|
||||||
|
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
|
||||||
|
backwards pass.
|
||||||
|
nonlinearity: the non-linear function (`nn.functional` name),
|
||||||
|
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
|
||||||
|
"""
|
||||||
|
|
||||||
|
fan = _calculate_correct_fan(array, mode)
|
||||||
|
gain = calculate_gain(nonlinearity, a)
|
||||||
|
std = gain / math.sqrt(fan)
|
||||||
|
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
|
||||||
|
return np.random.uniform(-bound, bound, array.shape)
|
||||||
|
|
||||||
|
|
||||||
|
def kaiming_normal_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||||
|
r"""Fills the input `Tensor` with values according to the method
|
||||||
|
described in `Delving deep into rectifiers: Surpassing human-level
|
||||||
|
performance on ImageNet classification` - He, K. et al. (2015), using a
|
||||||
|
normal distribution. The resulting tensor will have values sampled from
|
||||||
|
:math:`\mathcal{N}(0, \text{std}^2)` where
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}
|
||||||
|
|
||||||
|
Also known as He initialization.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
array: an n-dimensional `tensor`
|
||||||
|
a: the negative slope of the rectifier used after this layer (only
|
||||||
|
used with ``'leaky_relu'``)
|
||||||
|
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
|
||||||
|
preserves the magnitude of the variance of the weights in the
|
||||||
|
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
|
||||||
|
backwards pass.
|
||||||
|
nonlinearity: the non-linear function (`nn.functional` name),
|
||||||
|
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
|
||||||
|
"""
|
||||||
|
fan = _calculate_correct_fan(array, mode)
|
||||||
|
gain = calculate_gain(nonlinearity, a)
|
||||||
|
std = gain / math.sqrt(fan)
|
||||||
|
return np.random.normal(0, std, array.shape)
|
||||||
|
|
||||||
|
def _calculate_fan_in_and_fan_out(array):
|
||||||
|
dimensions = len(array.shape)
|
||||||
|
if dimensions < 2:
|
||||||
|
raise ValueError("Fan in and fan out can not be computed for array with fewer than 2 dimensions")
|
||||||
|
|
||||||
|
num_input_fmaps = array.shape[1]
|
||||||
|
num_output_fmaps = array.shape[0]
|
||||||
|
receptive_field_size = 1
|
||||||
|
if dimensions > 2:
|
||||||
|
receptive_field_size = array[0][0].size
|
||||||
|
fan_in = num_input_fmaps * receptive_field_size
|
||||||
|
fan_out = num_output_fmaps * receptive_field_size
|
||||||
|
|
||||||
|
return fan_in, fan_out
|
||||||
|
|
||||||
|
class KaimingUniform(init.Initializer):
|
||||||
|
def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||||
|
super(KaimingUniform, self).__init__()
|
||||||
|
self.a = a
|
||||||
|
self.mode = mode
|
||||||
|
self.nonlinearity = nonlinearity
|
||||||
|
|
||||||
|
def _initialize(self, arr):
|
||||||
|
tmp = kaiming_uniform_(arr, self.a, self.mode, self.nonlinearity)
|
||||||
|
init._assignment(arr, tmp)
|
||||||
|
|
||||||
|
class KaimingNormal(init.Initializer):
|
||||||
|
def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||||
|
super(KaimingNormal, self).__init__()
|
||||||
|
self.a = a
|
||||||
|
self.mode = mode
|
||||||
|
self.nonlinearity = nonlinearity
|
||||||
|
|
||||||
|
def _initialize(self, arr):
|
||||||
|
tmp = kaiming_normal_(arr, self.a, self.mode, self.nonlinearity)
|
||||||
|
init._assignment(arr, tmp)
|
||||||
|
|
||||||
|
def default_recurisive_init(custom_cell):
|
||||||
|
for name, cell in custom_cell.cells_and_names():
|
||||||
|
if isinstance(cell, nn.Conv2d):
|
||||||
|
cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)), cell.weight.default_input.shape(), cell.weight.default_input.dtype())
|
||||||
|
if cell.bias is not None:
|
||||||
|
fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight.default_input.asnumpy())
|
||||||
|
bound = 1 / math.sqrt(fan_in)
|
||||||
|
cell.bias.default_input = Tensor(np.random.uniform(-bound, bound, cell.bias.default_input.shape()), cell.bias.default_input.dtype())
|
||||||
|
elif isinstance(cell, nn.Dense):
|
||||||
|
cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)), cell.weight.default_input.shape(), cell.weight.default_input.dtype())
|
||||||
|
if cell.bias is not None:
|
||||||
|
fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight.default_input.asnumpy())
|
||||||
|
bound = 1 / math.sqrt(fan_in)
|
||||||
|
cell.bias.default_input = Tensor(np.random.uniform(-bound, bound, cell.bias.default_input.shape()), cell.bias.default_input.dtype())
|
||||||
|
elif isinstance(cell, nn.BatchNorm2d) or isinstance(cell, nn.BatchNorm1d):
|
||||||
|
pass
|
|
@ -260,3 +260,24 @@ def resnet50(class_num=10):
|
||||||
[256, 512, 1024, 2048],
|
[256, 512, 1024, 2048],
|
||||||
[1, 2, 2, 2],
|
[1, 2, 2, 2],
|
||||||
class_num)
|
class_num)
|
||||||
|
|
||||||
|
def resnet101(class_num=1001):
|
||||||
|
"""
|
||||||
|
Get ResNet101 neural network.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
class_num (int): Class number.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Cell, cell instance of ResNet101 neural network.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> net = resnet101(1001)
|
||||||
|
"""
|
||||||
|
return ResNet(ResidualBlock,
|
||||||
|
[3, 4, 23, 3],
|
||||||
|
[64, 256, 512, 1024],
|
||||||
|
[256, 512, 1024, 2048],
|
||||||
|
[1, 2, 2, 2],
|
||||||
|
class_num)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue