!15823 add modelzoo network deeplabv3

From: @anzhengqi
Reviewed-by: @oacjiewen,@jonyguo
Signed-off-by: @jonyguo
This commit is contained in:
mindspore-ci-bot 2021-05-07 10:25:10 +08:00 committed by Gitee
commit f0339c921e
1 changed files with 68 additions and 0 deletions

View File

@ -0,0 +1,68 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import pytest
from tests.st.model_zoo_tests import utils
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_single
def test_DeeplabV3_voc2007():
cur_path = os.path.dirname(os.path.abspath(__file__))
model_path = "{}/../../../../model_zoo/official/cv".format(cur_path)
model_name = "deeplabv3"
utils.copy_files(model_path, cur_path, model_name)
cur_model_path = os.path.join(cur_path, model_name)
old_list = ['/PATH/TO/EXPERIMENTS_DIR',
'/PATH/TO/MODEL_ZOO_CODE',
'/PATH/TO/MINDRECORD_NAME',
'/PATH/TO/PRETRAIN_MODEL',
"\\${train_code_path}/src/tools/rank_table_8p.json"]
new_list = [cur_model_path + '/train',
cur_model_path,
os.path.join(utils.data_root, "voc/voc2012/mindrecord_train/vocaug_mindrecord0"),
os.path.join(utils.ckpt_root, "deeplabv3/resnet101_ascend.ckpt"),
utils.rank_table_path]
utils.exec_sed_command(old_list, new_list,
os.path.join(cur_model_path, "scripts/run_distribute_train_s16_r1.sh"))
old_list = ['model.train(args.train_epochs',
'callbacks=cbs']
new_list = ['model.train(70',
'callbacks=cbs, sink_size=2']
utils.exec_sed_command(old_list, new_list, os.path.join(cur_model_path, "train.py"))
exec_network_shell = "cd {}; sh scripts/run_distribute_train_s16_r1.sh".format(model_name)
ret = os.system(exec_network_shell)
assert ret == 0
cmd = "ps -ef | grep python | grep train.py | grep -v grep"
ret = utils.process_check(100, cmd)
assert ret
log_file = os.path.join(cur_model_path, "train/device{}/log")
for i in range(8):
per_step_time = utils.get_perf_data(log_file.format(i))
print("per_step_time is", per_step_time)
assert per_step_time < 530.0
loss_list = []
for i in range(8):
loss = utils.get_loss_data_list(log_file.format(i))
print("loss is", loss[-1])
loss_list.append(loss[-1])
assert sum(loss_list) / len(loss_list) < 2.5