forked from mindspore-Ecosystem/mindspore
!18738 [assistant][ops]New operator implementation, include LSUNDataset
Merge pull request !18738 from Wangsong95/lsun_dataset
This commit is contained in:
commit
eeb731ae3e
|
@ -101,6 +101,7 @@
|
|||
#include "minddata/dataset/engine/ir/datasetops/source/kmnist_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/libri_tts_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/lj_speech_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/lsun_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/manifest_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/minddata_node.h"
|
||||
#endif
|
||||
|
@ -1438,6 +1439,36 @@ LJSpeechDataset::LJSpeechDataset(const std::vector<char> &dataset_dir, const std
|
|||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
LSUNDataset::LSUNDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
const std::vector<std::vector<char>> &classes, bool decode,
|
||||
const std::shared_ptr<Sampler> &sampler, const std::shared_ptr<DatasetCache> &cache) {
|
||||
// Create logical representation of LSUNDataset.
|
||||
auto sampler_obj = sampler ? sampler->Parse() : nullptr;
|
||||
auto ds = std::make_shared<LSUNNode>(CharToString(dataset_dir), CharToString(usage), VectorCharToString(classes),
|
||||
decode, sampler_obj, cache);
|
||||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
LSUNDataset::LSUNDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
const std::vector<std::vector<char>> &classes, bool decode, const Sampler *sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
// Create logical representation of LSUNDataset.
|
||||
auto sampler_obj = sampler ? sampler->Parse() : nullptr;
|
||||
auto ds = std::make_shared<LSUNNode>(CharToString(dataset_dir), CharToString(usage), VectorCharToString(classes),
|
||||
decode, sampler_obj, cache);
|
||||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
LSUNDataset::LSUNDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
const std::vector<std::vector<char>> &classes, bool decode,
|
||||
const std::reference_wrapper<Sampler> sampler, const std::shared_ptr<DatasetCache> &cache) {
|
||||
// Create logical representation of LSUNDataset.
|
||||
auto sampler_obj = sampler.get().Parse();
|
||||
auto ds = std::make_shared<LSUNNode>(CharToString(dataset_dir), CharToString(usage), VectorCharToString(classes),
|
||||
decode, sampler_obj, cache);
|
||||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
ManifestDataset::ManifestDataset(const std::vector<char> &dataset_file, const std::vector<char> &usage,
|
||||
const std::shared_ptr<Sampler> &sampler,
|
||||
const std::map<std::vector<char>, int32_t> &class_indexing, bool decode,
|
||||
|
|
|
@ -69,6 +69,7 @@
|
|||
// IR leaf nodes disabled for android
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/lj_speech_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/lsun_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/manifest_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/minddata_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/multi30k_node.h"
|
||||
|
@ -439,6 +440,18 @@ PYBIND_REGISTER(LJSpeechNode, 2, ([](const py::module *m) {
|
|||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(LSUNNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<LSUNNode, DatasetNode, std::shared_ptr<LSUNNode>>(*m, "LSUNNode",
|
||||
"to create a LSUNNode")
|
||||
.def(py::init([](const std::string &dataset_dir, const std::string &usage,
|
||||
const std::vector<std::string> &classes, bool decode, const py::handle &sampler) {
|
||||
auto lsun =
|
||||
std::make_shared<LSUNNode>(dataset_dir, usage, classes, decode, toSamplerObj(sampler), nullptr);
|
||||
THROW_IF_ERROR(lsun->ValidateParams());
|
||||
return lsun;
|
||||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(ManifestNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<ManifestNode, DatasetNode, std::shared_ptr<ManifestNode>>(*m, "ManifestNode",
|
||||
"to create a ManifestNode")
|
||||
|
|
|
@ -30,6 +30,7 @@ set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
|
|||
kmnist_op.cc
|
||||
libri_tts_op.cc
|
||||
lj_speech_op.cc
|
||||
lsun_op.cc
|
||||
mappable_leaf_op.cc
|
||||
mnist_op.cc
|
||||
multi30k_op.cc
|
||||
|
|
|
@ -108,7 +108,7 @@ class ImageFolderOp : public MappableLeafOp {
|
|||
//// \return Status of the function
|
||||
Status GetNumClasses(int64_t *num_classes) override;
|
||||
|
||||
private:
|
||||
protected:
|
||||
// Load a tensor row according to a pair
|
||||
// @param row_id_type row_id - id for this tensor row
|
||||
// @param ImageLabelPair pair - <imagefile,label>
|
||||
|
@ -119,7 +119,7 @@ class ImageFolderOp : public MappableLeafOp {
|
|||
/// @param std::string & dir - dir to walk all images
|
||||
/// @param int64_t * cnt - number of non folder files under the current dir
|
||||
/// @return
|
||||
Status RecursiveWalkFolder(Path *dir);
|
||||
virtual Status RecursiveWalkFolder(Path *dir);
|
||||
|
||||
/// start walking of all dirs
|
||||
/// @return
|
||||
|
|
|
@ -0,0 +1,168 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/lsun_op.h"
|
||||
|
||||
#include <fstream>
|
||||
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/core/tensor_shape.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "utils/ms_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
LSUNOp::LSUNOp(int32_t num_wkrs, const std::string &file_dir, int32_t queue_size, const std::string &usage,
|
||||
const std::vector<std::string> &classes, bool do_decode, std::unique_ptr<DataSchema> data_schema,
|
||||
std::shared_ptr<SamplerRT> sampler)
|
||||
: ImageFolderOp(num_wkrs, file_dir, queue_size, false, do_decode, {}, {}, std::move(data_schema),
|
||||
std::move(sampler)),
|
||||
usage_(std::move(usage)),
|
||||
classes_(std::move(classes)) {}
|
||||
|
||||
void LSUNOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal 1-liner info for this op
|
||||
out << "\n";
|
||||
} else {
|
||||
// Call the super class for displaying any common detailed info
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal stuff
|
||||
out << "\nNumber of rows: " << num_rows_ << "\nLSUN directory: " << folder_path_
|
||||
<< "\nDecode: " << (decode_ ? "yes" : "no") << "\n\n";
|
||||
}
|
||||
}
|
||||
|
||||
Status LSUNOp::WalkDir(Path *dir, const std::string &usage, const std::vector<std::string> &classes,
|
||||
const std::unique_ptr<Queue<std::string>> &folder_name_queue, int64_t *num_class) {
|
||||
RETURN_UNEXPECTED_IF_NULL(dir);
|
||||
std::vector<std::string> split;
|
||||
if (usage == "train" || usage == "all") {
|
||||
split.push_back("_train");
|
||||
}
|
||||
if (usage == "valid" || usage == "all") {
|
||||
split.push_back("_val");
|
||||
}
|
||||
uint64_t dirname_offset = dir->ToString().length();
|
||||
std::shared_ptr<Path::DirIterator> dir_itr = Path::DirIterator::OpenDirectory(dir);
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(dir_itr != nullptr,
|
||||
"Invalid path, failed to open image dir: " + dir->ToString() + ", permission denied.");
|
||||
std::set<std::string> classes_set;
|
||||
std::vector<std::string> valid_classes = classes;
|
||||
if (classes.empty()) {
|
||||
valid_classes = {"bedroom", "bridge", "church_outdoor", "classroom", "conference_room",
|
||||
"dining_room", "kitchen", "living_room", "restaurant", "tower"};
|
||||
}
|
||||
while (dir_itr->HasNext()) {
|
||||
std::string subdir = dir_itr->Next().ToString();
|
||||
for (auto str : split) {
|
||||
std::string name = subdir.substr(dirname_offset);
|
||||
for (auto class_name : valid_classes) {
|
||||
if (name.find(class_name + str) != std::string::npos) {
|
||||
RETURN_IF_NOT_OK(folder_name_queue->EmplaceBack(name));
|
||||
classes_set.insert(class_name);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (num_class != nullptr) {
|
||||
*num_class = classes_set.size();
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// A thread that calls WalkFolder
|
||||
Status LSUNOp::RecursiveWalkFolder(Path *dir) {
|
||||
RETURN_UNEXPECTED_IF_NULL(dir);
|
||||
if (usage_ == "test") {
|
||||
Path folder(folder_path_);
|
||||
folder = folder / "test";
|
||||
|
||||
RETURN_IF_NOT_OK(folder_name_queue_->EmplaceBack(folder.ToString().substr(dirname_offset_)));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
RETURN_IF_NOT_OK(WalkDir(dir, usage_, classes_, folder_name_queue_, nullptr));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status LSUNOp::CountRowsAndClasses(const std::string &path, const std::string &usage,
|
||||
const std::vector<std::string> &classes, int64_t *num_rows, int64_t *num_classes) {
|
||||
Path dir(path);
|
||||
int64_t row_cnt = 0;
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(dir.Exists() && dir.IsDirectory(), "Invalid parameter, input dataset path " + path +
|
||||
" does not exist or is not a directory.");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(num_classes != nullptr || num_rows != nullptr,
|
||||
"[Internal ERROR] num_class and num_rows are null.");
|
||||
|
||||
int32_t queue_size = 1024;
|
||||
auto folder_name_queue = std::make_unique<Queue<std::string>>(queue_size);
|
||||
RETURN_IF_NOT_OK(WalkDir(&dir, usage, classes, folder_name_queue, num_classes));
|
||||
|
||||
// return here if only num_class is needed
|
||||
RETURN_OK_IF_TRUE(num_rows == nullptr);
|
||||
|
||||
while (!folder_name_queue->empty()) {
|
||||
std::string name;
|
||||
RETURN_IF_NOT_OK(folder_name_queue->PopFront(&name));
|
||||
Path subdir(path + name);
|
||||
std::shared_ptr<Path::DirIterator> dir_itr = Path::DirIterator::OpenDirectory(&subdir);
|
||||
while (dir_itr->HasNext()) {
|
||||
++row_cnt;
|
||||
Path subdir_pic = dir_itr->Next();
|
||||
}
|
||||
}
|
||||
*num_rows = row_cnt;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status LSUNOp::LoadTensorRow(row_id_type row_id, TensorRow *trow) {
|
||||
ImageLabelPair pair_ptr = image_label_pairs_[row_id];
|
||||
std::shared_ptr<Tensor> image, label;
|
||||
uint32_t label_num = static_cast<uint32_t>(pair_ptr->second);
|
||||
RETURN_IF_NOT_OK(Tensor::CreateScalar(label_num, &label));
|
||||
RETURN_IF_NOT_OK(Tensor::CreateFromFile(folder_path_ + (pair_ptr->first), &image));
|
||||
|
||||
if (decode_ == true) {
|
||||
Status rc = Decode(image, &image);
|
||||
if (rc.IsError()) {
|
||||
std::string err = "Invalid image, " + folder_path_ + (pair_ptr->first) +
|
||||
" decode failed, the image is broken or permission denied.";
|
||||
RETURN_STATUS_UNEXPECTED(err);
|
||||
}
|
||||
}
|
||||
(*trow) = TensorRow(row_id, {std::move(image), std::move(label)});
|
||||
trow->setPath({folder_path_ + (pair_ptr->first), std::string("")});
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get number of classes
|
||||
Status LSUNOp::GetNumClasses(int64_t *num_classes) {
|
||||
RETURN_UNEXPECTED_IF_NULL(num_classes);
|
||||
if (num_classes_ > 0) {
|
||||
*num_classes = num_classes_;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
RETURN_IF_NOT_OK(CountRowsAndClasses(folder_path_, usage_, classes_, nullptr, num_classes));
|
||||
num_classes_ = *num_classes;
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,114 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_LSUN_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_LSUN_OP_H_
|
||||
|
||||
#include <memory>
|
||||
#include <queue>
|
||||
#include <string>
|
||||
#include <set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/image_folder_op.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
/// \brief Forward declares.
|
||||
template <typename T>
|
||||
class Queue;
|
||||
|
||||
using ImageLabelPair = std::shared_ptr<std::pair<std::string, int32_t>>;
|
||||
using FolderImagesPair = std::shared_ptr<std::pair<std::string, std::queue<ImageLabelPair>>>;
|
||||
|
||||
class LSUNOp : public ImageFolderOp {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] int32_t num_wkrs num of workers reading images in parallel.
|
||||
/// \param[in] std::string file_dir dir directory of LSUNDataset.
|
||||
/// \param[in] int32_t queue_size connector queue size.
|
||||
/// \param[in] std::string usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] std::vector<std::string> classes Classes list to load.
|
||||
/// \param[in] bool do_decode decode the images after reading.
|
||||
/// \param[in] std::unique_ptr<dataschema> data_schema schema of data.
|
||||
/// \param[in] unique_ptr<Sampler> sampler sampler tells LSUNOp what to read.
|
||||
LSUNOp(int32_t num_wkrs, const std::string &file_dir, int32_t queue_size, const std::string &usage,
|
||||
const std::vector<std::string> &classes, bool do_decode, std::unique_ptr<DataSchema> data_schema,
|
||||
std::shared_ptr<SamplerRT> sampler);
|
||||
|
||||
/// \brief Destructor.
|
||||
~LSUNOp() = default;
|
||||
|
||||
/// \brief A print method typically used for debugging.
|
||||
/// \param[out] out The output stream to write output to.
|
||||
/// \param[in] show_all A bool to control if you want to show all info or just a summary.
|
||||
void Print(std::ostream &out, bool show_all) const override;
|
||||
|
||||
/// \brief Function to count the number and classes of samples in the LSUN dataset.
|
||||
/// \param[in] const std::string &path path to the LSUN directory.
|
||||
/// \param[in] std::string usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] const std::vector<std::string> &classes Classes list to load.
|
||||
/// \param[out] int64_t *num_rows output arg that will hold the minimum of the actual dataset
|
||||
/// size and numSamples.
|
||||
/// \param[out] int64_t *num_classes output arg that will hold the classes num of the actual dataset
|
||||
/// size and numSamples.
|
||||
/// \return Status The status code returned.
|
||||
static Status CountRowsAndClasses(const std::string &path, const std::string &usage,
|
||||
const std::vector<std::string> &classes, int64_t *num_rows, int64_t *num_classes);
|
||||
|
||||
/// \brief Op name getter.
|
||||
/// \return Name of the current Op.
|
||||
std::string Name() const override { return "LSUNOp"; }
|
||||
|
||||
/// \brief Dataset name getter.
|
||||
/// \param[in] upper Whether to get upper name.
|
||||
/// \return Dataset name of the current Op.
|
||||
std::string DatasetName(bool upper = false) const override { return upper ? "LSUN" : "lsun"; }
|
||||
|
||||
/// \brief Load a tensor row according to a pair
|
||||
/// \param[in] row_id id for this tensor row
|
||||
/// \param[out] trow image & label read into this tensor row
|
||||
/// \return Status The status code returned
|
||||
Status LoadTensorRow(row_id_type row_id, TensorRow *trow) override;
|
||||
|
||||
/// \brief Base-class override for GetNumClasses
|
||||
/// \param[out] num_classes the number of classes
|
||||
/// \return Status of the function
|
||||
Status GetNumClasses(int64_t *num_classes) override;
|
||||
|
||||
private:
|
||||
/// \brief Base-class override for RecursiveWalkFolder
|
||||
/// \param[in] std::string & dir dir to lsun dataset.
|
||||
/// \return Status of the function
|
||||
Status RecursiveWalkFolder(Path *dir) override;
|
||||
|
||||
/// \brief Function to save the path list to folder_paths
|
||||
/// \param[in] std::string & dir dir to lsun dataset.
|
||||
/// \param[in] std::string usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] const std::vector<std::string> &classes Classes list to load.
|
||||
/// \param[out] std::unique_ptr<Queue<std::string>> &folder_name_queue output arg that will hold the path list.
|
||||
/// \param[out] int64_t *num_class the number of classes
|
||||
/// \return Status of the function
|
||||
static Status WalkDir(Path *dir, const std::string &usage, const std::vector<std::string> &classes,
|
||||
const std::unique_ptr<Queue<std::string>> &folder_name_queue, int64_t *num_class);
|
||||
|
||||
std::string usage_;
|
||||
std::vector<std::string> classes_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_LSUN_OP_H_
|
|
@ -105,6 +105,7 @@ constexpr char kIWSLT2017Node[] = "IWSLT2017Dataset";
|
|||
constexpr char kKMnistNode[] = "KMnistDataset";
|
||||
constexpr char kLibriTTSNode[] = "LibriTTSDataset";
|
||||
constexpr char kLJSpeechNode[] = "LJSpeechDataset";
|
||||
constexpr char kLSUNNode[] = "LSUNDataset";
|
||||
constexpr char kManifestNode[] = "ManifestDataset";
|
||||
constexpr char kMindDataNode[] = "MindDataDataset";
|
||||
constexpr char kMnistNode[] = "MnistDataset";
|
||||
|
|
|
@ -31,6 +31,7 @@ set(DATASET_ENGINE_IR_DATASETOPS_SOURCE_SRC_FILES
|
|||
kmnist_node.cc
|
||||
libri_tts_node.cc
|
||||
lj_speech_node.cc
|
||||
lsun_node.cc
|
||||
manifest_node.cc
|
||||
minddata_node.cc
|
||||
mnist_node.cc
|
||||
|
|
|
@ -0,0 +1,128 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/lsun_node.h"
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/lsun_op.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
LSUNNode::LSUNNode(const std::string &dataset_dir, const std::string &usage, const std::vector<std::string> &classes,
|
||||
bool decode, std::shared_ptr<SamplerObj> sampler, std::shared_ptr<DatasetCache> cache = nullptr)
|
||||
: MappableSourceNode(std::move(cache)),
|
||||
dataset_dir_(dataset_dir),
|
||||
usage_(usage),
|
||||
classes_(classes),
|
||||
decode_(decode),
|
||||
sampler_(sampler) {}
|
||||
|
||||
std::shared_ptr<DatasetNode> LSUNNode::Copy() {
|
||||
std::shared_ptr<SamplerObj> sampler = (sampler_ == nullptr) ? nullptr : sampler_->SamplerCopy();
|
||||
auto node = std::make_shared<LSUNNode>(dataset_dir_, usage_, classes_, decode_, sampler, cache_);
|
||||
return node;
|
||||
}
|
||||
|
||||
void LSUNNode::Print(std::ostream &out) const {
|
||||
out << (Name() + "(path: " + dataset_dir_ + ", decode: " + (decode_ ? "true" : "false") + ")");
|
||||
}
|
||||
|
||||
Status LSUNNode::ValidateParams() {
|
||||
RETURN_IF_NOT_OK(DatasetNode::ValidateParams());
|
||||
RETURN_IF_NOT_OK(ValidateDatasetDirParam("LSUNDataset", dataset_dir_));
|
||||
RETURN_IF_NOT_OK(ValidateDatasetSampler("LSUNDataset", sampler_));
|
||||
RETURN_IF_NOT_OK(ValidateStringValue("LSUNDataset", usage_, {"train", "test", "valid", "all"}));
|
||||
for (auto class_name : classes_) {
|
||||
RETURN_IF_NOT_OK(ValidateStringValue("LSUNDataset", class_name,
|
||||
{"bedroom", "bridge", "church_outdoor", "classroom", "conference_room",
|
||||
"dining_room", "kitchen", "living_room", "restaurant", "tower"}));
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status LSUNNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) {
|
||||
// Do internal Schema generation.
|
||||
// This arg is exist in LSUNOp, but not externalized (in Python API).
|
||||
std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
|
||||
TensorShape scalar = TensorShape::CreateScalar();
|
||||
RETURN_IF_NOT_OK(schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
|
||||
RETURN_IF_NOT_OK(
|
||||
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
|
||||
std::shared_ptr<SamplerRT> sampler_rt = nullptr;
|
||||
RETURN_IF_NOT_OK(sampler_->SamplerBuild(&sampler_rt));
|
||||
|
||||
auto op = std::make_shared<LSUNOp>(num_workers_, dataset_dir_, connector_que_size_, usage_, classes_, decode_,
|
||||
std::move(schema), std::move(sampler_rt));
|
||||
op->SetTotalRepeats(GetTotalRepeats());
|
||||
op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
|
||||
RETURN_UNEXPECTED_IF_NULL(node_ops);
|
||||
node_ops->push_back(op);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get the shard id of node
|
||||
Status LSUNNode::GetShardId(int32_t *shard_id) {
|
||||
RETURN_UNEXPECTED_IF_NULL(shard_id);
|
||||
*shard_id = sampler_->ShardId();
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get Dataset size
|
||||
Status LSUNNode::GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) {
|
||||
if (dataset_size_ > 0) {
|
||||
*dataset_size = dataset_size_;
|
||||
return Status::OK();
|
||||
}
|
||||
int64_t sample_size, num_rows;
|
||||
RETURN_IF_NOT_OK(LSUNOp::CountRowsAndClasses(dataset_dir_, usage_, classes_, &num_rows, nullptr));
|
||||
std::shared_ptr<SamplerRT> sampler_rt = nullptr;
|
||||
RETURN_IF_NOT_OK(sampler_->SamplerBuild(&sampler_rt));
|
||||
sample_size = sampler_rt->CalculateNumSamples(num_rows);
|
||||
if (sample_size == -1) {
|
||||
RETURN_IF_NOT_OK(size_getter->DryRun(shared_from_this(), &sample_size));
|
||||
}
|
||||
*dataset_size = sample_size;
|
||||
dataset_size_ = *dataset_size;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status LSUNNode::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args, sampler_args;
|
||||
RETURN_IF_NOT_OK(sampler_->to_json(&sampler_args));
|
||||
args["sampler"] = sampler_args;
|
||||
args["num_parallel_workers"] = num_workers_;
|
||||
args["dataset_dir"] = dataset_dir_;
|
||||
args["usage"] = usage_;
|
||||
args["classes"] = classes_;
|
||||
args["decode"] = decode_;
|
||||
if (cache_ != nullptr) {
|
||||
nlohmann::json cache_args;
|
||||
RETURN_IF_NOT_OK(cache_->to_json(&cache_args));
|
||||
args["cache"] = cache_args;
|
||||
}
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,111 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_LSUN_NODE_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_LSUN_NODE_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "mindspore/ccsrc/minddata/dataset/engine/ir/cache/dataset_cache.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
/// \class LSUNNode
|
||||
/// \brief A Dataset derived class to represent LSUN dataset
|
||||
class LSUNNode : public MappableSourceNode {
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] dataset_dir Dataset directory of LSUNDataset.
|
||||
/// \param[in] usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] classes Choose specified lsun classes to load.
|
||||
/// \param[in] do_decode Decode the images after reading.
|
||||
/// \param[in] sampler Tells LSUNOp what to read.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
LSUNNode(const std::string &dataset_dir, const std::string &usage, const std::vector<std::string> &classes,
|
||||
bool decode, std::shared_ptr<SamplerObj> sampler, std::shared_ptr<DatasetCache> cache);
|
||||
|
||||
/// \brief Destructor
|
||||
~LSUNNode() = default;
|
||||
|
||||
/// \brief Node name getter
|
||||
/// \return Name of the current node
|
||||
std::string Name() const override { return kLSUNNode; }
|
||||
|
||||
/// \brief Print the description.
|
||||
/// \param[in] out The output stream to write output to.
|
||||
void Print(std::ostream &out) const override;
|
||||
|
||||
/// \brief Copy the node to a new object
|
||||
/// \return A shared pointer to the new copy
|
||||
std::shared_ptr<DatasetNode> Copy() override;
|
||||
|
||||
/// \brief a base class override function to create the required runtime dataset op objects for this class.
|
||||
/// \param[out] node_ops A vector containing shared pointer to the Dataset Ops that this object will create.
|
||||
/// \return Status Status::OK() if build successfully.
|
||||
Status Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) override;
|
||||
|
||||
/// \brief Parameters validation
|
||||
/// \return Status Status::OK() if all the parameters are valid
|
||||
Status ValidateParams() override;
|
||||
|
||||
/// \brief Get the shard id of node
|
||||
/// \param[in] share_id num of the shards of the Dataset
|
||||
/// \return Status Status::OK() if get shard id successfully
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter
|
||||
/// \param[in] estimate This is only supported by some of the ops and it's used to speed up the process of getting
|
||||
/// dataset size at the expense of accuracy.
|
||||
/// \param[out] dataset_size the size of the dataset
|
||||
/// \return Status of the function
|
||||
Status GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) override;
|
||||
|
||||
/// \brief Getter functions
|
||||
const std::string &DatasetDir() const { return dataset_dir_; }
|
||||
const std::string &Usage() const { return usage_; }
|
||||
const std::vector<std::string> &Classes() const { return classes_; }
|
||||
bool Decode() const { return decode_; }
|
||||
|
||||
/// \brief Get the arguments of node
|
||||
/// \param[out] out_json JSON string of all attributes
|
||||
/// \return Status of the function
|
||||
Status to_json(nlohmann::json *out_json) override;
|
||||
|
||||
/// \brief Sampler getter
|
||||
/// \return SamplerObj of the current node
|
||||
std::shared_ptr<SamplerObj> Sampler() override { return sampler_; }
|
||||
|
||||
/// \brief Sampler setter.
|
||||
/// \param[in] sampler Specify sampler.
|
||||
void SetSampler(std::shared_ptr<SamplerObj> sampler) override { sampler_ = sampler; }
|
||||
|
||||
private:
|
||||
std::string dataset_dir_;
|
||||
std::string usage_;
|
||||
std::vector<std::string> classes_;
|
||||
bool decode_;
|
||||
std::shared_ptr<SamplerObj> sampler_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_LSUN_NODE_H_
|
|
@ -388,7 +388,7 @@ class MS_API Dataset : public std::enable_shared_from_this<Dataset> {
|
|||
/// last operation. The default output_columns will have the same
|
||||
/// name as the input columns, i.e., the columns will be replaced.
|
||||
/// \param[in] project_columns A list of column names to project.
|
||||
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
|
||||
/// \param[in] cache Tensor cache to use (default=nullptr, which means no cache is used).
|
||||
/// \param[in] callbacks List of Dataset callbacks to be called.
|
||||
/// \return Shared pointer to the current Dataset.
|
||||
/// \par Example
|
||||
|
@ -3405,6 +3405,113 @@ inline std::shared_ptr<LJSpeechDataset> MS_API LJSpeech(const std::string &datas
|
|||
return std::make_shared<LJSpeechDataset>(StringToChar(dataset_dir), sampler, cache);
|
||||
}
|
||||
|
||||
/// \class LSUNDataset
|
||||
/// \brief A source dataset for reading LSUN datast.
|
||||
class MS_API LSUNDataset : public Dataset {
|
||||
public:
|
||||
/// \brief Constructor of LSUNDataset.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] classes Classes list to load.
|
||||
/// \param[in] decode Decode the images after reading.
|
||||
/// \param[in] sampler Shared pointer to a sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
LSUNDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
const std::vector<std::vector<char>> &classes, bool decode, const std::shared_ptr<Sampler> &sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Constructor of LSUNDataset.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] classes Classes list to load.
|
||||
/// \param[in] decode Decode the images after reading.
|
||||
/// \param[in] sampler Sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
LSUNDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
const std::vector<std::vector<char>> &classes, bool decode, const Sampler *sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Constructor of LSUNDataset.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] classes Classes list to load.
|
||||
/// \param[in] decode Decode the images after reading.
|
||||
/// \param[in] sampler Sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
LSUNDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
const std::vector<std::vector<char>> &classes, bool decode, const std::reference_wrapper<Sampler> sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Destructor of LSUNDataset.
|
||||
~LSUNDataset() = default;
|
||||
};
|
||||
|
||||
/// \brief Function to create a LSUNDataset.
|
||||
/// \note The generated dataset has two columns "image" and "label".
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all` (Default=`all`).
|
||||
/// \param[in] classes Classes list to load, such as 'bedroom', 'classroom' (Default={}, means load all classes).
|
||||
/// \param[in] decode Decode the images after reading (Default=false).
|
||||
/// \param[in] sampler Shared pointer to a sampler object used to choose samples from the dataset. If sampler is not
|
||||
/// given, a `RandomSampler` will be used to randomly iterate the entire dataset (Default = RandomSampler()).
|
||||
/// \param[in] cache Tensor cache to use (Default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the current LSUNDataset.
|
||||
/// \par Example
|
||||
/// \code
|
||||
/// /* Define dataset path and MindData object */
|
||||
/// std::string folder_path = "/path/to/lsun_dataset_directory";
|
||||
/// std::shared_ptr<Dataset> ds = LSUN(folder_path, "all");
|
||||
///
|
||||
/// /* Create iterator to read dataset */
|
||||
/// std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
/// std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
/// iter->GetNextRow(&row);
|
||||
///
|
||||
/// /* Note: In LSUNDataset, each data dictionary has keys "image" and "label" */
|
||||
/// auto image = row["image"];
|
||||
/// \endcode
|
||||
inline std::shared_ptr<LSUNDataset> MS_API
|
||||
LSUN(const std::string &dataset_dir, const std::string &usage = "all", const std::vector<std::string> &classes = {},
|
||||
bool decode = false, const std::shared_ptr<Sampler> &sampler = std::make_shared<RandomSampler>(),
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<LSUNDataset>(StringToChar(dataset_dir), StringToChar(usage), VectorStringToChar(classes),
|
||||
decode, sampler, cache);
|
||||
}
|
||||
|
||||
/// \brief Function to create a LSUNDataset.
|
||||
/// \note The generated dataset has two columns "image" and "label".
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] classes Classes list to load.
|
||||
/// \param[in] decode Decode the images after reading.
|
||||
/// \param[in] sampler Sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use (Default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the current LSUNDataset.
|
||||
inline std::shared_ptr<LSUNDataset> MS_API LSUN(const std::string &dataset_dir, const std::string &usage,
|
||||
const std::vector<std::string> &classes, bool decode,
|
||||
const Sampler *sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<LSUNDataset>(StringToChar(dataset_dir), StringToChar(usage), VectorStringToChar(classes),
|
||||
decode, sampler, cache);
|
||||
}
|
||||
|
||||
/// \brief Function to create a LSUNDataset.
|
||||
/// \note The generated dataset has two columns "image" and "label".
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Dataset splits of LSUN, can be `train`, `valid`, `test` or `all`.
|
||||
/// \param[in] classes Classes list to load.
|
||||
/// \param[in] decode Decode the images after reading.
|
||||
/// \param[in] sampler Sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use (Default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the current LSUNDataset.
|
||||
inline std::shared_ptr<LSUNDataset> MS_API LSUN(const std::string &dataset_dir, const std::string &usage,
|
||||
const std::vector<std::string> &classes, bool decode,
|
||||
const std::reference_wrapper<Sampler> sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<LSUNDataset>(StringToChar(dataset_dir), StringToChar(usage), VectorStringToChar(classes),
|
||||
decode, sampler, cache);
|
||||
}
|
||||
|
||||
/// \class ManifestDataset
|
||||
/// \brief A source dataset for reading and parsing Manifest dataset.
|
||||
class MS_API ManifestDataset : public Dataset {
|
||||
|
|
|
@ -53,6 +53,7 @@ class MS_API Sampler : std::enable_shared_from_this<Sampler> {
|
|||
friend class KMnistDataset;
|
||||
friend class LibriTTSDataset;
|
||||
friend class LJSpeechDataset;
|
||||
friend class LSUNDataset;
|
||||
friend class ManifestDataset;
|
||||
friend class MindDataDataset;
|
||||
friend class MnistDataset;
|
||||
|
|
|
@ -50,6 +50,7 @@ __all__ = ["Caltech101Dataset", # Vision
|
|||
"FlickrDataset", # Vision
|
||||
"Flowers102Dataset", # Vision
|
||||
"ImageFolderDataset", # Vision
|
||||
"LSUNDataset", # Vision
|
||||
"KMnistDataset", # Vision
|
||||
"ManifestDataset", # Vision
|
||||
"MnistDataset", # Vision
|
||||
|
|
|
@ -38,7 +38,7 @@ from .validators import check_imagefolderdataset, \
|
|||
check_usps_dataset, check_div2k_dataset, check_random_dataset, \
|
||||
check_sbu_dataset, check_qmnist_dataset, check_emnist_dataset, check_fake_image_dataset, check_places365_dataset, \
|
||||
check_photo_tour_dataset, check_svhn_dataset, check_stl10_dataset, check_semeion_dataset, \
|
||||
check_caltech101_dataset, check_caltech256_dataset, check_wider_face_dataset
|
||||
check_caltech101_dataset, check_caltech256_dataset, check_wider_face_dataset, check_lsun_dataset
|
||||
|
||||
from ..core.validator_helpers import replace_none
|
||||
|
||||
|
@ -2419,6 +2419,136 @@ class KMnistDataset(MappableDataset, VisionBaseDataset):
|
|||
return cde.KMnistNode(self.dataset_dir, self.usage, self.sampler)
|
||||
|
||||
|
||||
class LSUNDataset(MappableDataset, VisionBaseDataset):
|
||||
"""
|
||||
A source dataset that reads and parses the LSUN dataset.
|
||||
|
||||
The generated dataset has two columns: :py:obj:`[image, label]`.
|
||||
The tensor of column :py:obj:`image` is of the uint8 type.
|
||||
The tensor of column :py:obj:`label` is of a scalar of uint32 type.
|
||||
|
||||
Args:
|
||||
dataset_dir (str): Path to the root directory that contains the dataset.
|
||||
usage (str, optional): Usage of this dataset, can be `train`, `test`, `valid` or `all`
|
||||
(default=None, will be set to `all`).
|
||||
classes(Union[str, list[str]], optional): Choose the specific classes to load (default=None, means loading
|
||||
all classes in root directory).
|
||||
num_samples (int, optional): The number of images to be included in the dataset
|
||||
(default=None, all images).
|
||||
num_parallel_workers (int, optional): Number of workers to read the data
|
||||
(default=None, set in the config).
|
||||
shuffle (bool, optional): Whether or not to perform shuffle on the dataset
|
||||
(default=None, expected order behavior shown in the table).
|
||||
decode (bool, optional): Decode the images after reading (default=False).
|
||||
sampler (Sampler, optional): Object used to choose samples from the
|
||||
dataset (default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, 'num_samples' reflects
|
||||
the max sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing
|
||||
(default=None, which means no cache is used).
|
||||
|
||||
Raises:
|
||||
RuntimeError: If 'sampler' and 'shuffle' are specified at the same time.
|
||||
RuntimeError: If 'sampler' and sharding are specified at the same time.
|
||||
RuntimeError: If 'num_shards' is specified but 'shard_id' is None.
|
||||
RuntimeError: If 'shard_id' is specified but 'num_shards' is None.
|
||||
ValueError: If 'shard_id' is invalid (< 0 or >= num_shards).
|
||||
ValueError: If 'usage' or 'classes' is invalid (not in specific types).
|
||||
|
||||
.. list-table:: Expected Order Behavior of Using 'sampler' and 'shuffle'
|
||||
:widths: 25 25 50
|
||||
:header-rows: 1
|
||||
|
||||
* - Parameter 'sampler'
|
||||
- Parameter 'shuffle'
|
||||
- Expected Order Behavior
|
||||
* - None
|
||||
- None
|
||||
- random order
|
||||
* - None
|
||||
- True
|
||||
- random order
|
||||
* - None
|
||||
- False
|
||||
- sequential order
|
||||
* - Sampler object
|
||||
- None
|
||||
- order defined by sampler
|
||||
* - Sampler object
|
||||
- True
|
||||
- not allowed
|
||||
* - Sampler object
|
||||
- False
|
||||
- not allowed
|
||||
|
||||
Examples:
|
||||
>>> lsun_dataset_dir = "/path/to/lsun_dataset_directory"
|
||||
>>>
|
||||
>>> # 1) Read all samples (image files) in lsun_dataset_dir with 8 threads
|
||||
>>> dataset = ds.LSUNDataset(dataset_dir=lsun_dataset_dir,
|
||||
... num_parallel_workers=8)
|
||||
>>>
|
||||
>>> # 2) Read all train samples (image files) from folder "bedroom" and "classroom"
|
||||
>>> dataset = ds.LSUNDataset(dataset_dir=lsun_dataset_dir, usage="train",
|
||||
... classes=["bedroom", "classroom"])
|
||||
|
||||
About LSUN dataset:
|
||||
|
||||
The LSUN dataset accesses the effectiveness of this cascading procedure and enables further progress
|
||||
in visual recognition research.
|
||||
|
||||
The LSUN dataset contains around one million labeled images for each of 10 scene categories
|
||||
and 20 object categories. The author experimented with training popular convolutional networks and found
|
||||
that they achieved substantial performance gains when trained on this dataset.
|
||||
|
||||
You can unzip the original LSUN dataset files into this directory structure using official data.py and
|
||||
read by MindSpore's API.
|
||||
|
||||
.. code-block::
|
||||
|
||||
.
|
||||
└── lsun_dataset_directory
|
||||
├── test
|
||||
│ ├── ...
|
||||
├── bedroom_train
|
||||
│ ├── 1_1.jpg
|
||||
│ ├── 1_2.jpg
|
||||
├── bedroom_val
|
||||
│ ├── ...
|
||||
├── classroom_train
|
||||
│ ├── ...
|
||||
├── classroom_val
|
||||
│ ├── ...
|
||||
|
||||
Citation:
|
||||
|
||||
.. code-block::
|
||||
|
||||
article{yu15lsun,
|
||||
title={LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop},
|
||||
author={Yu, Fisher and Zhang, Yinda and Song, Shuran and Seff, Ari and Xiao, Jianxiong},
|
||||
journal={arXiv preprint arXiv:1506.03365},
|
||||
year={2015}
|
||||
}
|
||||
"""
|
||||
|
||||
@check_lsun_dataset
|
||||
def __init__(self, dataset_dir, usage=None, classes=None, num_samples=None, num_parallel_workers=None,
|
||||
shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None):
|
||||
super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples,
|
||||
shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache)
|
||||
self.dataset_dir = dataset_dir
|
||||
self.usage = replace_none(usage, "all")
|
||||
self.classes = replace_none(classes, [])
|
||||
self.decode = replace_none(decode, False)
|
||||
|
||||
def parse(self, children=None):
|
||||
return cde.LSUNNode(self.dataset_dir, self.usage, self.classes, self.decode, self.sampler)
|
||||
|
||||
|
||||
class ManifestDataset(MappableDataset, VisionBaseDataset):
|
||||
"""
|
||||
A source dataset for reading images from a Manifest file.
|
||||
|
|
|
@ -258,6 +258,47 @@ def check_iwslt2017_dataset(method):
|
|||
return new_method
|
||||
|
||||
|
||||
def check_lsun_dataset(method):
|
||||
"""A wrapper that wraps a parameter checker around the original Dataset(LSUNDataset)."""
|
||||
|
||||
@wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
_, param_dict = parse_user_args(method, *args, **kwargs)
|
||||
|
||||
nreq_param_int = ['num_samples', 'num_parallel_workers', 'num_shards', 'shard_id']
|
||||
nreq_param_bool = ['shuffle', 'decode']
|
||||
nreq_param_list = ['classes']
|
||||
|
||||
dataset_dir = param_dict.get('dataset_dir')
|
||||
check_dir(dataset_dir)
|
||||
|
||||
usage = param_dict.get('usage')
|
||||
if usage is not None:
|
||||
check_valid_str(usage, ["train", "test", "valid", "all"], "usage")
|
||||
|
||||
validate_dataset_param_value(nreq_param_int, param_dict, int)
|
||||
validate_dataset_param_value(nreq_param_bool, param_dict, bool)
|
||||
validate_dataset_param_value(nreq_param_list, param_dict, list)
|
||||
|
||||
categories = [
|
||||
'bedroom', 'bridge', 'church_outdoor', 'classroom', 'conference_room', 'dining_room', 'kitchen',
|
||||
'living_room', 'restaurant', 'tower'
|
||||
]
|
||||
classes = param_dict.get('classes')
|
||||
if classes is not None:
|
||||
for class_name in classes:
|
||||
check_valid_str(class_name, categories, "classes")
|
||||
|
||||
check_sampler_shuffle_shard_options(param_dict)
|
||||
|
||||
cache = param_dict.get('cache')
|
||||
check_cache_option(cache)
|
||||
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
def check_mnist_cifar_dataset(method):
|
||||
"""A wrapper that wraps a parameter checker around the original Dataset(ManifestDataset, Cifar10/100Dataset)."""
|
||||
|
||||
|
|
|
@ -40,6 +40,7 @@ SET(DE_UT_SRCS
|
|||
c_api_dataset_kmnist_test.cc
|
||||
c_api_dataset_libri_tts.cc
|
||||
c_api_dataset_lj_speech_test.cc
|
||||
c_api_dataset_lsun_test.cc
|
||||
c_api_dataset_manifest_test.cc
|
||||
c_api_dataset_minddata_test.cc
|
||||
c_api_dataset_multi30k_test.cc
|
||||
|
|
|
@ -0,0 +1,366 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "common/common.h"
|
||||
#include "minddata/dataset/include/dataset/datasets.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::dataset::DataType;
|
||||
using mindspore::dataset::Tensor;
|
||||
using mindspore::dataset::TensorShape;
|
||||
|
||||
class MindDataTestPipeline : public UT::DatasetOpTesting {
|
||||
protected:
|
||||
};
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNTrainDataset) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNTrainDataset.";
|
||||
|
||||
// Create a LSUN Train Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds = LSUN(folder_path, "train", {}, false, std::make_shared<RandomSampler>(false, 5));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("image"), row.end());
|
||||
EXPECT_NE(row.find("label"), row.end());
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 2);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNValidDataset) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNValidDataset.";
|
||||
|
||||
// Create a LSUN Validation Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds = LSUN(folder_path, "valid", {}, false, std::make_shared<RandomSampler>(false, 5));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("image"), row.end());
|
||||
EXPECT_NE(row.find("label"), row.end());
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 2);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNTestDataset) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNTestDataset.";
|
||||
|
||||
// Create a LSUN Test Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds = LSUN(folder_path, "test", {}, false, std::make_shared<RandomSampler>(false, 2));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("image"), row.end());
|
||||
EXPECT_NE(row.find("label"), row.end());
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 1);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNAllDataset) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNAllDataset.";
|
||||
|
||||
// Create a LSUN Test Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds = LSUN(folder_path, "all", {}, false, std::make_shared<RandomSampler>(false, 2));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("image"), row.end());
|
||||
EXPECT_NE(row.find("label"), row.end());
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 2);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNClassesDataset) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNClassesDataset.";
|
||||
|
||||
// Create a LSUN Train Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds =
|
||||
LSUN(folder_path, "train", {"bedroom", "classroom"}, false, std::make_shared<RandomSampler>(false, 5));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("image"), row.end());
|
||||
EXPECT_NE(row.find("label"), row.end());
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 2);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNDatasetWithPipeline) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNDatasetWithPipeline.";
|
||||
|
||||
// Create two LSUN Train Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds1 =
|
||||
LSUN(folder_path, "train", {"bedroom", "classroom"}, false, std::make_shared<RandomSampler>(false, 5));
|
||||
std::shared_ptr<Dataset> ds2 =
|
||||
LSUN(folder_path, "train", {"bedroom", "classroom"}, false, std::make_shared<RandomSampler>(false, 5));
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create two Repeat operation on ds.
|
||||
int32_t repeat_num = 1;
|
||||
ds1 = ds1->Repeat(repeat_num);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
repeat_num = 1;
|
||||
ds2 = ds2->Repeat(repeat_num);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create two Project operation on ds.
|
||||
std::vector<std::string> column_project = {"image", "label"};
|
||||
ds1 = ds1->Project(column_project);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
ds2 = ds2->Project(column_project);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create a Concat operation on the ds.
|
||||
ds1 = ds1->Concat({ds2});
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds1->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("image"), row.end());
|
||||
EXPECT_NE(row.find("label"), row.end());
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 4);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNGetDatasetSize) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNGetDatasetSize.";
|
||||
|
||||
// Create a LSUN Train Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds = LSUN(folder_path, "train", {}, false);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 2);
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNClassesGetDatasetSize) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestGetLSUNClassesDatasetSize.";
|
||||
|
||||
// Create a LSUN Train Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds = LSUN(folder_path, "train", {"bedroom", "classroom"}, false);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 2);
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset.
|
||||
/// Expectation: get correct lsun dataset.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNDatasetGetters) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNDatasetGetters.";
|
||||
|
||||
// Create a LSUN Train Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds = LSUN(folder_path, "train", {}, true);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 2);
|
||||
std::vector<DataType> types = ToDETypes(ds->GetOutputTypes());
|
||||
std::vector<TensorShape> shapes = ToTensorShapeVec(ds->GetOutputShapes());
|
||||
std::vector<std::string> column_names = {"image", "label"};
|
||||
int64_t num_classes = ds->GetNumClasses();
|
||||
EXPECT_EQ(types.size(), 2);
|
||||
EXPECT_EQ(types[0].ToString(), "uint8");
|
||||
EXPECT_EQ(types[1].ToString(), "uint32");
|
||||
EXPECT_EQ(shapes.size(), 2);
|
||||
EXPECT_EQ(shapes[1].ToString(), "<>");
|
||||
EXPECT_EQ(num_classes, 2);
|
||||
EXPECT_EQ(ds->GetBatchSize(), 1);
|
||||
EXPECT_EQ(ds->GetRepeatCount(), 1);
|
||||
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 2);
|
||||
EXPECT_EQ(ToDETypes(ds->GetOutputTypes()), types);
|
||||
EXPECT_EQ(ToTensorShapeVec(ds->GetOutputShapes()), shapes);
|
||||
EXPECT_EQ(ds->GetNumClasses(), 2);
|
||||
EXPECT_EQ(ds->GetColumnNames(), column_names);
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset with wrong folder path.
|
||||
/// Expectation: throw exception correctly.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNDatasetFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNDatasetFail.";
|
||||
|
||||
// Create a LSUN Dataset in which th folder path is invalid.
|
||||
std::shared_ptr<Dataset> ds = LSUN("", "train", {}, false, std::make_shared<RandomSampler>(false, 5));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: invalid LSUN input, state folder path is invalid.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: LSUNDataset.
|
||||
/// Description: test LSUNDataset with null sampler.
|
||||
/// Expectation: throw exception correctly.
|
||||
TEST_F(MindDataTestPipeline, TestLSUNDatasetWithNullSamplerFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLSUNDatasetWithNullSamplerFail.";
|
||||
|
||||
// Create a LSUN Dataset in which th Sampler is not provided.
|
||||
std::string folder_path = datasets_root_path_ + "/testLSUN";
|
||||
std::shared_ptr<Dataset> ds = LSUN(folder_path, "train", {}, false, nullptr);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: invalid LSUN input, sampler cannot be nullptr.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 155 KiB |
Binary file not shown.
After Width: | Height: | Size: 75 KiB |
Binary file not shown.
After Width: | Height: | Size: 45 KiB |
Binary file not shown.
After Width: | Height: | Size: 422 KiB |
Binary file not shown.
After Width: | Height: | Size: 63 KiB |
|
@ -0,0 +1,609 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Test LSUN dataset operators
|
||||
"""
|
||||
import pytest
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.vision.c_transforms as vision
|
||||
from mindspore import log as logger
|
||||
|
||||
DATA_DIR = "../data/dataset/testLSUN"
|
||||
|
||||
|
||||
def test_lsun_basic():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case basic")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 4
|
||||
|
||||
|
||||
def test_lsun_num_samples():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case num_samples")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, num_samples=10, num_parallel_workers=2)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 4
|
||||
|
||||
random_sampler = ds.RandomSampler(num_samples=3, replacement=True)
|
||||
data1 = ds.LSUNDataset(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
|
||||
|
||||
num_iter = 0
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
num_iter += 1
|
||||
|
||||
assert num_iter == 3
|
||||
|
||||
random_sampler = ds.RandomSampler(num_samples=3, replacement=False)
|
||||
data1 = ds.LSUNDataset(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
|
||||
|
||||
num_iter = 0
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
num_iter += 1
|
||||
|
||||
assert num_iter == 3
|
||||
|
||||
|
||||
def test_lsun_num_shards():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case numShards")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, num_shards=2, shard_id=1)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 2
|
||||
|
||||
|
||||
def test_lsun_shard_id():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case withShardID")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, num_shards=2, shard_id=0)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 2
|
||||
|
||||
|
||||
def test_lsun_no_shuffle():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case noShuffle")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, shuffle=False)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 4
|
||||
|
||||
|
||||
def test_lsun_extra_shuffle():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case extra_shuffle")
|
||||
# define parameters
|
||||
repeat_count = 2
|
||||
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, shuffle=True)
|
||||
data1 = data1.shuffle(buffer_size=5)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 8
|
||||
|
||||
|
||||
def test_lsun_decode():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case decode")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, decode=True)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 4
|
||||
|
||||
|
||||
def test_sequential_sampler():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case SequentialSampler")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
# apply dataset operations
|
||||
sampler = ds.SequentialSampler(num_samples=10)
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="train", sampler=sampler)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
result = []
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
result.append(item["label"])
|
||||
num_iter += 1
|
||||
|
||||
assert num_iter == 2
|
||||
logger.info("Result: {}".format(result))
|
||||
|
||||
|
||||
def test_random_sampler():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case RandomSampler")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
sampler = ds.RandomSampler()
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="train", sampler=sampler)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 2
|
||||
|
||||
|
||||
def test_distributed_sampler():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case DistributedSampler")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
sampler = ds.DistributedSampler(2, 1)
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="train", sampler=sampler)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 1
|
||||
|
||||
|
||||
def test_pk_sampler():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case PKSampler")
|
||||
# define parameters
|
||||
repeat_count = 1
|
||||
|
||||
# apply dataset operations
|
||||
sampler = ds.PKSampler(1)
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="train", sampler=sampler)
|
||||
data1 = data1.repeat(repeat_count)
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 2
|
||||
|
||||
|
||||
def test_chained_sampler():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case Chained Sampler - Random and Sequential, with repeat")
|
||||
|
||||
# Create chained sampler, random and sequential
|
||||
sampler = ds.RandomSampler()
|
||||
child_sampler = ds.SequentialSampler()
|
||||
sampler.add_child(child_sampler)
|
||||
# Create LSUNDataset with sampler
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="train", sampler=sampler)
|
||||
|
||||
data1 = data1.repeat(count=3)
|
||||
|
||||
# Verify dataset size
|
||||
data1_size = data1.get_dataset_size()
|
||||
logger.info("dataset size is: {}".format(data1_size))
|
||||
assert data1_size == 6
|
||||
|
||||
# Verify number of iterations
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 6
|
||||
|
||||
|
||||
def test_lsun_test_dataset():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case usage")
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="test", num_samples=8)
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 1
|
||||
|
||||
|
||||
def test_lsun_valid_dataset():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case usage")
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="valid", num_samples=8)
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 2
|
||||
|
||||
|
||||
def test_lsun_train_dataset():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case usage")
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="train", num_samples=8)
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 2
|
||||
|
||||
|
||||
def test_lsun_all_dataset():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case usage")
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="all", num_samples=8)
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 4
|
||||
|
||||
|
||||
def test_lsun_classes():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test classes of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case usage")
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, usage="train", classes=["bedroom"], num_samples=8)
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 1
|
||||
|
||||
|
||||
def test_lsun_zip():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test basic usage of LSUN
|
||||
Expectation: the dataset is as expected
|
||||
"""
|
||||
logger.info("Test Case zip")
|
||||
# define parameters
|
||||
repeat_count = 2
|
||||
|
||||
# apply dataset operations
|
||||
data1 = ds.LSUNDataset(DATA_DIR, num_samples=10)
|
||||
data2 = ds.LSUNDataset(DATA_DIR, num_samples=10)
|
||||
|
||||
data1 = data1.repeat(repeat_count)
|
||||
# rename dataset2 for no conflict
|
||||
data2 = data2.rename(input_columns=["image", "label"], output_columns=["image1", "label1"])
|
||||
data3 = ds.zip((data1, data2))
|
||||
|
||||
num_iter = 0
|
||||
# each data is a dictionary
|
||||
for item in data3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
logger.info("image is {}".format(item["image"]))
|
||||
logger.info("label is {}".format(item["label"]))
|
||||
num_iter += 1
|
||||
|
||||
logger.info("Number of data in data1: {}".format(num_iter))
|
||||
assert num_iter == 4
|
||||
|
||||
|
||||
def test_lsun_exception():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test error cases for LSUN
|
||||
Expectation: throw exception correctly
|
||||
"""
|
||||
logger.info("Test lsun exception")
|
||||
|
||||
error_msg_1 = "sampler and shuffle cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_1):
|
||||
ds.LSUNDataset(DATA_DIR, shuffle=False, sampler=ds.PKSampler(3))
|
||||
|
||||
error_msg_2 = "sampler and sharding cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_2):
|
||||
ds.LSUNDataset(DATA_DIR, sampler=ds.PKSampler(3), num_shards=2, shard_id=0)
|
||||
|
||||
error_msg_3 = "num_shards is specified and currently requires shard_id as well"
|
||||
with pytest.raises(RuntimeError, match=error_msg_3):
|
||||
ds.LSUNDataset(DATA_DIR, num_shards=10)
|
||||
|
||||
error_msg_4 = "shard_id is specified but num_shards is not"
|
||||
with pytest.raises(RuntimeError, match=error_msg_4):
|
||||
ds.LSUNDataset(DATA_DIR, shard_id=0)
|
||||
|
||||
error_msg_5 = "Input shard_id is not within the required interval"
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.LSUNDataset(DATA_DIR, num_shards=5, shard_id=-1)
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.LSUNDataset(DATA_DIR, num_shards=5, shard_id=5)
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.LSUNDataset(DATA_DIR, num_shards=2, shard_id=5)
|
||||
|
||||
error_msg_6 = "num_parallel_workers exceeds"
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.LSUNDataset(DATA_DIR, shuffle=False, num_parallel_workers=0)
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.LSUNDataset(DATA_DIR, shuffle=False, num_parallel_workers=256)
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.LSUNDataset(DATA_DIR, shuffle=False, num_parallel_workers=-2)
|
||||
|
||||
error_msg_7 = "Argument shard_id"
|
||||
with pytest.raises(TypeError, match=error_msg_7):
|
||||
ds.LSUNDataset(DATA_DIR, num_shards=2, shard_id="0")
|
||||
|
||||
|
||||
|
||||
def test_lsun_exception_map():
|
||||
"""
|
||||
Feature: LSUN
|
||||
Description: test error cases for LSUN
|
||||
Expectation: throw exception correctly
|
||||
"""
|
||||
logger.info("Test lsun exception map")
|
||||
def exception_func(item):
|
||||
raise Exception("Error occur!")
|
||||
|
||||
def exception_func2(image, label):
|
||||
raise Exception("Error occur!")
|
||||
|
||||
try:
|
||||
data = ds.LSUNDataset(DATA_DIR)
|
||||
data = data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1)
|
||||
for _ in data.__iter__():
|
||||
pass
|
||||
assert False
|
||||
except RuntimeError as e:
|
||||
assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
|
||||
|
||||
try:
|
||||
data = ds.LSUNDataset(DATA_DIR)
|
||||
data = data.map(operations=exception_func2,
|
||||
input_columns=["image", "label"],
|
||||
output_columns=["image", "label", "label1"],
|
||||
column_order=["image", "label", "label1"],
|
||||
num_parallel_workers=1)
|
||||
for _ in data.__iter__():
|
||||
pass
|
||||
assert False
|
||||
except RuntimeError as e:
|
||||
assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
|
||||
|
||||
try:
|
||||
data = ds.LSUNDataset(DATA_DIR)
|
||||
data = data.map(operations=vision.Decode(), input_columns=["image"], num_parallel_workers=1)
|
||||
data = data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1)
|
||||
for _ in data.__iter__():
|
||||
pass
|
||||
assert False
|
||||
except RuntimeError as e:
|
||||
assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_lsun_basic()
|
||||
test_lsun_num_samples()
|
||||
test_sequential_sampler()
|
||||
test_random_sampler()
|
||||
test_distributed_sampler()
|
||||
test_pk_sampler()
|
||||
test_lsun_num_shards()
|
||||
test_lsun_shard_id()
|
||||
test_lsun_no_shuffle()
|
||||
test_lsun_extra_shuffle()
|
||||
test_lsun_decode()
|
||||
test_lsun_test_dataset()
|
||||
test_lsun_valid_dataset()
|
||||
test_lsun_train_dataset()
|
||||
test_lsun_all_dataset()
|
||||
test_lsun_classes()
|
||||
test_lsun_zip()
|
||||
test_lsun_exception()
|
||||
test_lsun_exception_map()
|
Loading…
Reference in New Issue