forked from mindspore-Ecosystem/mindspore
!8441 Add Parallel Implements of UniformCandidateSampler
From: @huangxinjing Reviewed-by: Signed-off-by:
This commit is contained in:
commit
ee72de1db2
|
@ -910,6 +910,21 @@ double GatherV2PCost::GetBackwardCommCost(const std::vector<TensorInfo> &inputs,
|
|||
return result;
|
||||
}
|
||||
|
||||
double UniformCandidateSamplerCost::GetForwardComputationCost(const std::vector<TensorInfo> &inputs,
|
||||
const std::vector<TensorInfo> &outputs,
|
||||
int64_t stage_id) const {
|
||||
double result = 0.0;
|
||||
Shape input0_slice_shape = inputs[0].slice_shape();
|
||||
if (inputs_type_lengths_.size() != inputs.size()) {
|
||||
MS_LOG(EXCEPTION) << "Invalid inputs type size " << inputs_type_lengths_.size()
|
||||
<< " for UniformCandidateSampler cost";
|
||||
}
|
||||
|
||||
result = ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
double GatherV2PCost::GetForwardComputationCost(const std::vector<TensorInfo> &inputs,
|
||||
const std::vector<TensorInfo> &outputs, int64_t stage_id) const {
|
||||
double result = 0.0;
|
||||
|
|
|
@ -684,6 +684,38 @@ class UniqueCost : public OperatorCost {
|
|||
|
||||
using UniqueCostPtr = std::shared_ptr<UniqueCost>;
|
||||
|
||||
class UniformCandidateSamplerCost : public OperatorCost {
|
||||
public:
|
||||
explicit UniformCandidateSamplerCost(bool is_inputs_related) : OperatorCost(is_inputs_related) {}
|
||||
UniformCandidateSamplerCost() : OperatorCost(false) {}
|
||||
~UniformCandidateSamplerCost() override = default;
|
||||
|
||||
double GetCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int64_t stage_id) const override {
|
||||
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
|
||||
}
|
||||
double GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int64_t stage_id) const override {
|
||||
return 0;
|
||||
}
|
||||
double GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int64_t stage_id) const override {
|
||||
return 0;
|
||||
}
|
||||
double GetComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int64_t stage_id) const override {
|
||||
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
|
||||
}
|
||||
double GetForwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int64_t stage_id) const override;
|
||||
double GetBackwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int64_t) const override {
|
||||
return 0.0;
|
||||
}
|
||||
};
|
||||
|
||||
using UniformCandidateSamplerCostPtr = std::shared_ptr<UniformCandidateSamplerCost>;
|
||||
|
||||
class GatherV2Cost : public OperatorCost {
|
||||
public:
|
||||
explicit GatherV2Cost(bool is_inputs_related) : OperatorCost(is_inputs_related) {}
|
||||
|
|
|
@ -176,6 +176,7 @@ REGISTER(ExpandDimsInfo);
|
|||
REGISTER(SqueezeInfo);
|
||||
REGISTER(SigmoidCrossEntropyWithLogitsInfo);
|
||||
REGISTER(SquareInfo);
|
||||
REGISTER(UniformCandidateSamplerInfo);
|
||||
REGISTER(UnsortedSegmentSumInfo);
|
||||
REGISTER(UnsortedSegmentMinInfo);
|
||||
REGISTER(GatherV2PInfo);
|
||||
|
|
|
@ -47,6 +47,7 @@
|
|||
#include "frontend/parallel/ops_info/pack_info.h"
|
||||
#include "frontend/parallel/ops_info/broadcast_to_info.h"
|
||||
#include "frontend/parallel/ops_info/unique_info.h"
|
||||
#include "frontend/parallel/ops_info/uniform_candidate_sampler_info.h"
|
||||
#include "frontend/parallel/ops_info/reluv2_info.h"
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_
|
||||
|
|
|
@ -102,6 +102,12 @@ constexpr char END[] = "end";
|
|||
constexpr char STRIDES[] = "strides";
|
||||
constexpr char GROUP[] = "group";
|
||||
constexpr char FUSION[] = "fusion";
|
||||
constexpr char NUM_SAMPLED[] = "num_sampled";
|
||||
constexpr char NUM_TRUE[] = "num_true";
|
||||
constexpr char SEED[] = "seed";
|
||||
constexpr char RANGE_MAX[] = "range_max";
|
||||
constexpr char REMOVE_ACCIDENTAL_HITS[] = "remove_accidental_hits";
|
||||
constexpr char UNIQUE_STRING[] = "unique";
|
||||
constexpr char AXIS[] = "axis";
|
||||
constexpr char AXES[] = "axes";
|
||||
constexpr char START[] = "start";
|
||||
|
@ -191,6 +197,7 @@ constexpr char DIV[] = "Div";
|
|||
constexpr char REAL_DIV[] = "RealDiv";
|
||||
constexpr char ASSIGN_SUB[] = "AssignSub";
|
||||
constexpr char GREATER[] = "Greater";
|
||||
constexpr char UNIFORM_CANDIDATE_SAMPLER[] = "UniformCandidateSampler";
|
||||
constexpr char VIRTUAL_DATA_SET[] = "_VirtualDataset";
|
||||
constexpr char VIRTUAL_DATA_SET_INFO[] = "VirtualDatasetInfo";
|
||||
constexpr char SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS[] = "SparseSoftmaxCrossEntropyWithLogits";
|
||||
|
|
|
@ -0,0 +1,316 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "frontend/parallel/ops_info/uniform_candidate_sampler_info.h"
|
||||
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
|
||||
#include "frontend/parallel/device_matrix.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
|
||||
#include "frontend/parallel/graph_util/generate_graph.h"
|
||||
#include "frontend/parallel/context.h"
|
||||
#include "pipeline/jit/resource.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
|
||||
Status UniformCandidateSamplerInfo::GetUniformSamplerAttrInt64(const std::string &args, int64_t *value) {
|
||||
auto iter = attrs_.find(args);
|
||||
if (iter == attrs_.end()) {
|
||||
MS_LOG(ERROR) << name_ << ": Can not find the attr for " << args;
|
||||
return FAILED;
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(iter->second);
|
||||
if (!iter->second->isa<Int64Imm>()) {
|
||||
MS_LOG(ERROR) << name_ << ": The type of attr is not int, the attr is " << args;
|
||||
return FAILED;
|
||||
}
|
||||
*value = iter->second->cast<Int64ImmPtr>()->value();
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::GetUniformSamplerAttrBool(const std::string &args, bool *value) {
|
||||
auto iter = attrs_.find(args);
|
||||
if (iter == attrs_.end()) {
|
||||
MS_LOG(ERROR) << name_ << ": Can not find the attr for " << args;
|
||||
return FAILED;
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(iter->second);
|
||||
if (!iter->second->isa<BoolImm>()) {
|
||||
MS_LOG(ERROR) << name_ << ": The type of attr is not bool, the attr is " << args;
|
||||
return FAILED;
|
||||
}
|
||||
*value = iter->second->cast<BoolImmPtr>()->value();
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::GetAttrs() {
|
||||
if (GetUniformSamplerAttrInt64(NUM_TRUE, &num_true_) != SUCCESS ||
|
||||
GetUniformSamplerAttrInt64(NUM_SAMPLED, &num_sampled_) != SUCCESS ||
|
||||
GetUniformSamplerAttrBool(UNIQUE_STRING, &unique_) != SUCCESS ||
|
||||
GetUniformSamplerAttrInt64(RANGE_MAX, &range_max_) != SUCCESS ||
|
||||
GetUniformSamplerAttrInt64(SEED, &seed_) != SUCCESS ||
|
||||
GetUniformSamplerAttrBool(REMOVE_ACCIDENTAL_HITS, &remove_accidental_hits_) != SUCCESS) {
|
||||
return FAILED;
|
||||
} else {
|
||||
MS_LOG(INFO) << name_ << ": The num_ture is " << num_true_ << " , the num_sampled is " << num_sampled_
|
||||
<< ", the unique is " << unique_ << " , the range max is " << range_max_ << " , the seed is " << seed_
|
||||
<< " , the remove_accidental_hits is " << remove_accidental_hits_;
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::CheckStrategy(const StrategyPtr &strategy) {
|
||||
MS_EXCEPTION_IF_NULL(strategy);
|
||||
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid strategy";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
std::vector<Dimensions> stra = strategy->GetInputDim();
|
||||
if (stra.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The strategy is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
Dimensions input_strategy = stra.at(0);
|
||||
if (remove_accidental_hits_) {
|
||||
bool shard = std::any_of(input_strategy.begin(), input_strategy.end(), [](int64_t v) { return v > 1; });
|
||||
if (shard) {
|
||||
MS_LOG(ERROR) << name_ << ": When remove accidental_hits is true, the operation only supports (1,1) shard.";
|
||||
return FAILED;
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::InferDevMatrixShape() {
|
||||
MS_EXCEPTION_IF_NULL(strategy_);
|
||||
std::vector<Dimensions> stra = strategy_->GetInputDim();
|
||||
if (stra.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The strategy is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
dev_matrix_shape_ = stra[0];
|
||||
return SUCCESS;
|
||||
}
|
||||
// There are three outputs
|
||||
// sampled_candidates, true_expected_count, sampled_expected_count
|
||||
// the sampled_candidates and sampled_expected_count is recomputed on each device with tensor map [-1]
|
||||
// only true_expected_count is shard
|
||||
Status UniformCandidateSamplerInfo::InferTensorMap() {
|
||||
TensorMap tensor_map;
|
||||
|
||||
TensorMap sampled_tensor_map = {-1};
|
||||
if (inputs_shape_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
int32_t size = SizeToInt(inputs_shape_[0].size());
|
||||
for (int i = 0; i < size; ++i) {
|
||||
tensor_map.push_back(size - i - 1);
|
||||
}
|
||||
|
||||
inputs_tensor_map_.push_back(tensor_map);
|
||||
|
||||
// Output 1 sampled_candidates
|
||||
outputs_tensor_map_.push_back(sampled_tensor_map);
|
||||
// Output 2 true_expected_count
|
||||
outputs_tensor_map_.push_back(tensor_map);
|
||||
// Output 3 sampled_expected_count
|
||||
outputs_tensor_map_.push_back(sampled_tensor_map);
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
// The UniformCandidateSampler is not supported to be the last op of the net
|
||||
Status UniformCandidateSamplerInfo::InferAsLossDivisor() {
|
||||
as_loss_divisor_ = 1;
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::InferMirrorOps() {
|
||||
mirror_ops_.clear();
|
||||
if (inputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
Shape input_tensor_map = inputs_tensor_map_[0];
|
||||
std::vector<Group> group;
|
||||
if (CreateGroupByTensorMap(input_tensor_map, &group) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Create group for input failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
OperatorVector mirror_op;
|
||||
if (group.empty()) {
|
||||
MS_LOG(INFO) << name_ << ": The mirror group is empty.";
|
||||
return SUCCESS;
|
||||
} else {
|
||||
mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
|
||||
mirror_ops_.push_back(mirror_op);
|
||||
std::string group_name = group[0].name();
|
||||
MS_LOG(INFO) << name_ << " : Create the mirror ops success, the group name is " << group_name;
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::InferTensorInfo() {
|
||||
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid args";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
TensorLayout input_layout, output_layout;
|
||||
// infer tensor layout
|
||||
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo input_tensor_info(input_layout);
|
||||
inputs_tensor_info_.push_back(input_tensor_info);
|
||||
|
||||
for (size_t i = 0; i < outputs_shape_.size(); ++i) {
|
||||
// infer tensor layout
|
||||
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[i], outputs_shape_[i]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo output_tensor_info(output_layout);
|
||||
outputs_tensor_info_.push_back(output_tensor_info);
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::SetCostUnderStrategy(const StrategyPtr &strategy) {
|
||||
return SetCostUnderStrategyBase(strategy);
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::GenerateStrategies(int64_t stage_id) {
|
||||
if (InferAttrs() != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer attrs failed";
|
||||
return FAILED;
|
||||
}
|
||||
if (inputs_shape_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
|
||||
return FAILED;
|
||||
}
|
||||
Shape input_split = {};
|
||||
Shapes splittable_input = {};
|
||||
size_t splitable_value = 1;
|
||||
if (remove_accidental_hits_) {
|
||||
splitable_value = 0;
|
||||
}
|
||||
for (size_t i = 0; i < inputs_shape_[0].size(); ++i) {
|
||||
input_split.push_back(splitable_value);
|
||||
}
|
||||
splittable_input.push_back(input_split);
|
||||
|
||||
std::vector<StrategyPtr> sp_vector;
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_input, &sp_vector) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Generate strategies failed";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
size_t success = 0;
|
||||
for (auto &sp : sp_vector) {
|
||||
PrintStrategy(sp);
|
||||
if (SetCostUnderStrategy(sp) == SUCCESS) {
|
||||
success++;
|
||||
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
|
||||
PrintStrategy(sp);
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
std::shared_ptr<Strategys> UniformCandidateSamplerInfo::GenerateBatchStrategies() {
|
||||
if (GetAttrs() != SUCCESS) {
|
||||
MS_LOG(EXCEPTION) << name_ << ": Get attr failed";
|
||||
}
|
||||
CheckGlobalDeviceManager();
|
||||
Dimensions input_strategy(inputs_shape_[0].size(), 1);
|
||||
Strategys strategy_v = {input_strategy};
|
||||
return std::make_shared<Strategys>(strategy_v);
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::Init(const StrategyPtr &strategy) {
|
||||
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init failed.";
|
||||
return FAILED;
|
||||
}
|
||||
MS_LOG(INFO) << name_ << ": Init success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::InitForCostModel(const StrategyPtr &strategy) {
|
||||
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << name_ << ": Init for cost model success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
ReplaceGraphPtr UniformCandidateSamplerInfo::replace_graph(const CNodePtr &cnode) {
|
||||
auto input_strategy = strategy_->GetInputDim().at(0);
|
||||
|
||||
// Only when the axis-1 is sharded, we need to modify the attribute
|
||||
if (input_strategy.size() == 2 && input_strategy[1] > 1) {
|
||||
if (ComputeReplaceGraph(cnode) != SUCCESS) {
|
||||
MS_LOG(EXCEPTION) << name_ << ": ComputeReplaceGraph failed.";
|
||||
}
|
||||
}
|
||||
return replace_graph_;
|
||||
}
|
||||
|
||||
Status UniformCandidateSamplerInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
|
||||
GenerateGraph gen_g = GenerateGraph();
|
||||
auto input_strategy = strategy_->GetInputDim().at(0);
|
||||
if (gen_g.Init(cnode) != SUCCESS) {
|
||||
MS_LOG(ERROR) << "GenerateGraph Init failed";
|
||||
return FAILED;
|
||||
}
|
||||
auto slice_num_true = num_true_ / input_strategy[1];
|
||||
// Get the attributes of the UnsortedSegmentMin
|
||||
Attr attr_num_ture = std::make_pair(NUM_TRUE, MakeValue(slice_num_true));
|
||||
Attr attr_num_sampled = std::make_pair(NUM_SAMPLED, MakeValue(num_sampled_));
|
||||
Attr attr_unique = std::make_pair(UNIQUE_STRING, MakeValue(unique_));
|
||||
Attr attr_range_max = std::make_pair(RANGE_MAX, MakeValue(range_max_));
|
||||
Attr attr_seed = std::make_pair(SEED, MakeValue(seed_));
|
||||
Attr attr_remove_accidental_hits = std::make_pair(REMOVE_ACCIDENTAL_HITS, MakeValue(remove_accidental_hits_));
|
||||
|
||||
OperatorAttrs attrs = {attr_num_ture, attr_num_sampled, attr_unique,
|
||||
attr_range_max, attr_seed, attr_remove_accidental_hits};
|
||||
auto new_sampler_op = gen_g.PushBack({gen_g.NewOpInst(UNIFORM_CANDIDATE_SAMPLER, attrs), gen_g.virtual_input_node()});
|
||||
std::vector<std::pair<AnfNodePtr, int64_t>> input_nodes = {std::make_pair(new_sampler_op, 1)};
|
||||
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int64_t>>, AnfNodePtr>>(
|
||||
std::make_pair(input_nodes, new_sampler_op));
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,76 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNFORM_CANDIDATE_SAMPLER_INFO_H_
|
||||
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNFORM_CANDIDATE_SAMPLER_INFO_H_
|
||||
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
|
||||
#include "frontend/parallel/ops_info/operator_info.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
constexpr size_t UNIFORM_CANDIDATE_SAMPLER_INPUTS_SIZE = 2;
|
||||
class UniformCandidateSamplerInfo : public OperatorInfo {
|
||||
public:
|
||||
UniformCandidateSamplerInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs,
|
||||
std::make_shared<UniformCandidateSamplerCost>()),
|
||||
num_sampled_(0),
|
||||
num_true_(0),
|
||||
unique_(false),
|
||||
range_max_(0),
|
||||
seed_(0),
|
||||
remove_accidental_hits_(false) {}
|
||||
~UniformCandidateSamplerInfo() override = default;
|
||||
|
||||
Status Init(const StrategyPtr &strategy) override;
|
||||
Status InitForCostModel(const StrategyPtr &strategy) override;
|
||||
Status GenerateStrategies(int64_t) override;
|
||||
std::shared_ptr<Strategys> GenerateBatchStrategies() override;
|
||||
Status SetCostUnderStrategy(const StrategyPtr &) override;
|
||||
Status InferAsLossDivisor() override;
|
||||
ReplaceGraphPtr replace_graph(const CNodePtr &cnode) override;
|
||||
|
||||
protected:
|
||||
Status GetAttrs() override;
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status InferMirrorOps() override;
|
||||
Status InferForwardCommunication() override { return SUCCESS; }
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status InferTensorMap() override;
|
||||
Status ComputeReplaceGraph(const CNodePtr &cnode);
|
||||
|
||||
private:
|
||||
Status GetUniformSamplerAttrBool(const std::string &argsy, bool *value);
|
||||
Status GetUniformSamplerAttrInt64(const std::string &args, int64_t *value);
|
||||
int64_t num_sampled_;
|
||||
int64_t num_true_;
|
||||
bool unique_;
|
||||
int64_t range_max_;
|
||||
int64_t seed_;
|
||||
bool remove_accidental_hits_;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNFORM_CANDIDATE_SAMPLER_INFO_H_
|
|
@ -317,7 +317,7 @@ bool IsSplittableOperator(const std::string &op_name) {
|
|||
EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE,
|
||||
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
|
||||
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM,
|
||||
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE};
|
||||
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER};
|
||||
// clang-format on
|
||||
|
||||
auto iter = splittable_op.find(op_name);
|
||||
|
|
|
@ -0,0 +1,161 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor, Parameter
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn import TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, embedding_weight, num_true, num_sampled, unique, range_max, seed, remove_accidential,
|
||||
strategy1=None):
|
||||
super(Net, self).__init__()
|
||||
self.sampler = P.UniformCandidateSampler(num_true, num_sampled, unique, range_max, seed,
|
||||
remove_accidential)
|
||||
if strategy1:
|
||||
self.sampler.shard(strategy1)
|
||||
self.embedding_table = Parameter(embedding_weight, "embedding_weight")
|
||||
self.gatherv2 = P.GatherV2()
|
||||
self.reduce_sum = P.ReduceSum()
|
||||
self.reduce_sum2 = P.ReduceSum()
|
||||
self.reduce_sum3 = P.ReduceSum()
|
||||
|
||||
def construct(self, x):
|
||||
out1, out2, out3 = self.sampler(x)
|
||||
lookup = self.gatherv2(self.embedding_table, out1, 0)
|
||||
loss = out1 - out3
|
||||
loss = self.reduce_sum(loss, (0,))
|
||||
loss2 = self.reduce_sum2(lookup, (0, 1))
|
||||
loss3 = self.reduce_sum3(out2, (0, 1))
|
||||
loss4 = loss + loss2 + loss3
|
||||
return loss4
|
||||
|
||||
|
||||
class Net2(nn.Cell):
|
||||
def __init__(self, mul_weight, num_true, num_sampled, unique, range_max, seed, remove_accidential,
|
||||
strategy1=None):
|
||||
super(Net2, self).__init__()
|
||||
self.sampler = P.UniformCandidateSampler(num_true, num_sampled, unique, range_max, seed,
|
||||
remove_accidential)
|
||||
self.cast = P.Cast()
|
||||
self.weight = Parameter(mul_weight, "w1")
|
||||
self.mul = P.Mul()
|
||||
if strategy1:
|
||||
self.sampler.shard(strategy1)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.mul(x, self.weight)
|
||||
x = self.cast(x, ms.int32)
|
||||
_, out2, _ = self.sampler(x)
|
||||
return out2
|
||||
|
||||
|
||||
_w = Tensor(np.ones([48, 16]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([96, 64]), dtype=ms.float32)
|
||||
_x = Tensor(np.ones([48, 16]), dtype=ms.int32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_no_full_0d_split():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((4, 1),)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1,
|
||||
remove_accidential=False, strategy1=strategy1)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_no_full_1d_split():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 4),)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1,
|
||||
remove_accidential=False, strategy1=strategy1)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_full_0d_split():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((8, 1),)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1,
|
||||
remove_accidential=False, strategy1=strategy1)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_full_1d_split():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 8),)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1,
|
||||
remove_accidential=False, strategy1=strategy1)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_full_1d_unqiue_false():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 8),)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=False, range_max=20, seed=1,
|
||||
remove_accidential=False, strategy1=strategy1)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_auto_parllel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=False, range_max=20, seed=1,
|
||||
remove_accidential=False, strategy1=None)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_auto_parllel_unqiue_true():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1,
|
||||
remove_accidential=False, strategy1=None)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_auto_parllel_remove_true():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=True, range_max=20, seed=1,
|
||||
remove_accidential=True, strategy1=None)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_full_1d_remove_true():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 8),)
|
||||
net = Net(_w1, num_true=16, num_sampled=16, unique=False, range_max=20, seed=1,
|
||||
remove_accidential=True, strategy1=strategy1)
|
||||
with pytest.raises(RuntimeError):
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_uniform_candidate_sampler_as_final():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((1, 8),)
|
||||
net = Net2(_w, num_true=16, num_sampled=16, unique=False, range_max=20, seed=1, remove_accidential=False,
|
||||
strategy1=strategy1)
|
||||
with pytest.raises(RuntimeError):
|
||||
compile_net(net)
|
Loading…
Reference in New Issue