forked from mindspore-Ecosystem/mindspore
addressed comments from reviews
This commit is contained in:
parent
46c8ef28de
commit
edc42c5b85
|
@ -353,10 +353,10 @@ void bindTensorOps1(py::module *m) {
|
|||
.def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("operations"),
|
||||
py::arg("NumOps") = UniformAugOp::kDefNumOps);
|
||||
|
||||
(void)py::class_<BoundingBoxAugOp, TensorOp, std::shared_ptr<BoundingBoxAugOp>>(
|
||||
*m, "BoundingBoxAugOp", "Tensor operation to apply a transformation on a random choice of bounding boxes.")
|
||||
(void)py::class_<BoundingBoxAugmentOp, TensorOp, std::shared_ptr<BoundingBoxAugmentOp>>(
|
||||
*m, "BoundingBoxAugmentOp", "Tensor operation to apply a transformation on a random choice of bounding boxes.")
|
||||
.def(py::init<std::shared_ptr<TensorOp>, float>(), py::arg("transform"),
|
||||
py::arg("ratio") = BoundingBoxAugOp::defRatio);
|
||||
py::arg("ratio") = BoundingBoxAugmentOp::kDefRatio);
|
||||
|
||||
(void)py::class_<ResizeBilinearOp, TensorOp, std::shared_ptr<ResizeBilinearOp>>(
|
||||
*m, "ResizeBilinearOp",
|
||||
|
|
|
@ -23,12 +23,14 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
const float BoundingBoxAugOp::defRatio = 0.3;
|
||||
const float BoundingBoxAugmentOp::kDefRatio = 0.3;
|
||||
|
||||
BoundingBoxAugOp::BoundingBoxAugOp(std::shared_ptr<TensorOp> transform, float ratio)
|
||||
: ratio_(ratio), transform_(std::move(transform)) {}
|
||||
BoundingBoxAugmentOp::BoundingBoxAugmentOp(std::shared_ptr<TensorOp> transform, float ratio)
|
||||
: ratio_(ratio), transform_(std::move(transform)) {
|
||||
rnd_.seed(GetSeed());
|
||||
}
|
||||
|
||||
Status BoundingBoxAugOp::Compute(const TensorRow &input, TensorRow *output) {
|
||||
Status BoundingBoxAugmentOp::Compute(const TensorRow &input, TensorRow *output) {
|
||||
IO_CHECK_VECTOR(input, output);
|
||||
BOUNDING_BOX_CHECK(input); // check if bounding boxes are valid
|
||||
uint32_t num_of_boxes = input[1]->shape()[0];
|
||||
|
@ -37,8 +39,7 @@ Status BoundingBoxAugOp::Compute(const TensorRow &input, TensorRow *output) {
|
|||
std::vector<uint32_t> selected_boxes;
|
||||
for (uint32_t i = 0; i < num_of_boxes; i++) boxes[i] = i;
|
||||
// sample bboxes according to ratio picked by user
|
||||
std::random_device rd;
|
||||
std::sample(boxes.begin(), boxes.end(), std::back_inserter(selected_boxes), num_to_aug, std::mt19937(rd()));
|
||||
std::sample(boxes.begin(), boxes.end(), std::back_inserter(selected_boxes), num_to_aug, rnd_);
|
||||
std::shared_ptr<Tensor> crop_out;
|
||||
std::shared_ptr<Tensor> res_out;
|
||||
std::shared_ptr<CVTensor> input_restore = CVTensor::AsCVTensor(input[0]);
|
||||
|
|
|
@ -24,33 +24,35 @@
|
|||
#include "dataset/core/tensor.h"
|
||||
#include "dataset/kernels/tensor_op.h"
|
||||
#include "dataset/util/status.h"
|
||||
#include "dataset/util/random.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class BoundingBoxAugOp : public TensorOp {
|
||||
class BoundingBoxAugmentOp : public TensorOp {
|
||||
public:
|
||||
// Default values, also used by python_bindings.cc
|
||||
static const float defRatio;
|
||||
static const float kDefRatio;
|
||||
|
||||
// Constructor for BoundingBoxAugmentOp
|
||||
// @param std::shared_ptr<TensorOp> transform transform: C++ opration to apply on select bounding boxes
|
||||
// @param float ratio: ratio of bounding boxes to have the transform applied on
|
||||
BoundingBoxAugOp(std::shared_ptr<TensorOp> transform, float ratio);
|
||||
BoundingBoxAugmentOp(std::shared_ptr<TensorOp> transform, float ratio);
|
||||
|
||||
~BoundingBoxAugOp() override = default;
|
||||
~BoundingBoxAugmentOp() override = default;
|
||||
|
||||
// Provide stream operator for displaying it
|
||||
friend std::ostream &operator<<(std::ostream &out, const BoundingBoxAugOp &so) {
|
||||
friend std::ostream &operator<<(std::ostream &out, const BoundingBoxAugmentOp &so) {
|
||||
so.Print(out);
|
||||
return out;
|
||||
}
|
||||
|
||||
void Print(std::ostream &out) const override { out << "BoundingBoxAugOp"; }
|
||||
void Print(std::ostream &out) const override { out << "BoundingBoxAugmentOp"; }
|
||||
|
||||
Status Compute(const TensorRow &input, TensorRow *output) override;
|
||||
|
||||
private:
|
||||
float ratio_;
|
||||
std::mt19937 rnd_;
|
||||
std::shared_ptr<TensorOp> transform_;
|
||||
};
|
||||
} // namespace dataset
|
||||
|
|
|
@ -29,20 +29,19 @@ Status RandomHorizontalFlipWithBBoxOp::Compute(const TensorRow &input, TensorRow
|
|||
BOUNDING_BOX_CHECK(input);
|
||||
if (distribution_(rnd_)) {
|
||||
// To test bounding boxes algorithm, create random bboxes from image dims
|
||||
size_t numOfBBoxes = input[1]->shape()[0]; // set to give number of bboxes
|
||||
float imgCenter = (input[0]->shape()[1] / 2); // get the center of the image
|
||||
size_t num_of_boxes = input[1]->shape()[0]; // set to give number of bboxes
|
||||
float img_center = (input[0]->shape()[1] / 2); // get the center of the image
|
||||
|
||||
for (int i = 0; i < numOfBBoxes; i++) {
|
||||
for (int i = 0; i < num_of_boxes; i++) {
|
||||
uint32_t b_w = 0; // bounding box width
|
||||
uint32_t min_x = 0;
|
||||
// get the required items
|
||||
input[1]->GetItemAt<uint32_t>(&min_x, {i, 0});
|
||||
input[1]->GetItemAt<uint32_t>(&b_w, {i, 2});
|
||||
// do the flip
|
||||
float diff = imgCenter - min_x; // get distance from min_x to center
|
||||
uint32_t refl_min_x = diff + imgCenter; // get reflection of min_x
|
||||
uint32_t new_min_x = refl_min_x - b_w; // subtract from the reflected min_x to get the new one
|
||||
|
||||
float diff = img_center - min_x; // get distance from min_x to center
|
||||
uint32_t refl_min_x = diff + img_center; // get reflection of min_x
|
||||
uint32_t new_min_x = refl_min_x - b_w; // subtract from the reflected min_x to get the new one
|
||||
input[1]->SetItemAt<uint32_t>({i, 0}, new_min_x);
|
||||
}
|
||||
(*output).push_back(nullptr);
|
||||
|
|
|
@ -45,6 +45,10 @@
|
|||
|
||||
#define BOUNDING_BOX_CHECK(input) \
|
||||
do { \
|
||||
if (input[1]->shape().Size() < 2) { \
|
||||
return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, \
|
||||
"Bounding boxes shape should have at least two dims"); \
|
||||
} \
|
||||
uint32_t num_of_features = input[1]->shape()[1]; \
|
||||
if (num_of_features < 4) { \
|
||||
return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, \
|
||||
|
|
|
@ -254,13 +254,16 @@ class RandomVerticalFlipWithBBox(cde.RandomVerticalFlipWithBBoxOp):
|
|||
super().__init__(prob)
|
||||
|
||||
|
||||
class BoundingBoxAug(cde.BoundingBoxAugOp):
|
||||
class BoundingBoxAugment(cde.BoundingBoxAugmentOp):
|
||||
"""
|
||||
Flip the input image vertically, randomly with a given probability.
|
||||
Apply a given image transform on a random selection of bounding box regions
|
||||
of a given image.
|
||||
|
||||
Args:
|
||||
transform: C++ operation (python OPs are not accepted).
|
||||
ratio (float): Ratio of bounding boxes to apply augmentation on. Range: [0,1] (default=1).
|
||||
transform: C++ transformation function to be applied on random selection
|
||||
of bounding box regions of a given image.
|
||||
ratio (float, optional): Ratio of bounding boxes to apply augmentation on.
|
||||
Range: [0,1] (default=0.3).
|
||||
"""
|
||||
@check_bounding_box_augment_cpp
|
||||
def __init__(self, transform, ratio=0.3):
|
||||
|
|
|
@ -862,13 +862,13 @@ def check_bounding_box_augment_cpp(method):
|
|||
transform = kwargs.get("transform")
|
||||
if "ratio" in kwargs:
|
||||
ratio = kwargs.get("ratio")
|
||||
if not isinstance(ratio, float) and not isinstance(ratio, int):
|
||||
raise ValueError("Ratio should be an int or float.")
|
||||
if ratio is not None:
|
||||
check_value(ratio, [0., 1.])
|
||||
kwargs["ratio"] = ratio
|
||||
else:
|
||||
ratio = 0.3
|
||||
if not isinstance(ratio, float) and not isinstance(ratio, int):
|
||||
raise ValueError("Ratio should be an int or float.")
|
||||
if not isinstance(transform, TensorOp):
|
||||
raise ValueError("Transform can only be a C++ operation.")
|
||||
kwargs["transform"] = transform
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
Testing the bounding box augment op in DE
|
||||
"""
|
||||
from enum import Enum
|
||||
from mindspore import log as logger
|
||||
import mindspore.log as logger
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
import matplotlib.pyplot as plt
|
||||
|
@ -39,59 +39,36 @@ class BoxType(Enum):
|
|||
WrongShape = 5
|
||||
|
||||
|
||||
class AddBadAnnotation: # pylint: disable=too-few-public-methods
|
||||
def add_bad_annotation(img, bboxes, box_type):
|
||||
"""
|
||||
Used to add erroneous bounding boxes to object detection pipelines.
|
||||
Usage:
|
||||
>>> # Adds a box that covers the whole image. Good for testing edge cases
|
||||
>>> de = de.map(input_columns=["image", "annotation"],
|
||||
>>> output_columns=["image", "annotation"],
|
||||
>>> operations=AddBadAnnotation(BoxType.OnEdge))
|
||||
Used to generate erroneous bounding box examples on given img.
|
||||
:param img: image where the bounding boxes are.
|
||||
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
:param box_type: type of bad box
|
||||
:return: bboxes with bad examples added
|
||||
"""
|
||||
height = img.shape[0]
|
||||
width = img.shape[1]
|
||||
if box_type == BoxType.WidthOverflow:
|
||||
# use box that overflows on width
|
||||
return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
def __init__(self, box_type):
|
||||
self.box_type = box_type
|
||||
if box_type == BoxType.HeightOverflow:
|
||||
# use box that overflows on height
|
||||
return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
def __call__(self, img, bboxes):
|
||||
"""
|
||||
Used to generate erroneous bounding box examples on given img.
|
||||
:param img: image where the bounding boxes are.
|
||||
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
:return: bboxes with bad examples added
|
||||
"""
|
||||
height = img.shape[0]
|
||||
width = img.shape[1]
|
||||
if self.box_type == BoxType.WidthOverflow:
|
||||
# use box that overflows on width
|
||||
return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32)
|
||||
if box_type == BoxType.NegativeXY:
|
||||
# use box with negative xy
|
||||
return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
if self.box_type == BoxType.HeightOverflow:
|
||||
# use box that overflows on height
|
||||
return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32)
|
||||
if box_type == BoxType.OnEdge:
|
||||
# use box that covers the whole image
|
||||
return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
if self.box_type == BoxType.NegativeXY:
|
||||
# use box with negative xy
|
||||
return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
if self.box_type == BoxType.OnEdge:
|
||||
# use box that covers the whole image
|
||||
return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
if self.box_type == BoxType.WrongShape:
|
||||
# use box that covers the whole image
|
||||
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
|
||||
return img, bboxes
|
||||
|
||||
|
||||
def h_flip(image):
|
||||
"""
|
||||
Apply the random_horizontal
|
||||
"""
|
||||
|
||||
# with the seed provided in this test case, it will always flip.
|
||||
# that's why we flip here too
|
||||
image = image[:, ::-1, :]
|
||||
return image
|
||||
if box_type == BoxType.WrongShape:
|
||||
# use box that covers the whole image
|
||||
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
|
||||
return img, bboxes
|
||||
|
||||
|
||||
def check_bad_box(data, box_type, expected_error):
|
||||
|
@ -102,8 +79,8 @@ def check_bad_box(data, box_type, expected_error):
|
|||
:return: None
|
||||
"""
|
||||
try:
|
||||
test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1),
|
||||
1) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1),
|
||||
1) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
|
||||
data = data.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
operations=fix_annotate)
|
||||
|
@ -111,7 +88,7 @@ def check_bad_box(data, box_type, expected_error):
|
|||
data = data.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=AddBadAnnotation(box_type)) # Add column for "annotation"
|
||||
operations=lambda img, bboxes: add_bad_annotation(img, bboxes, box_type))
|
||||
# map to apply ops
|
||||
data = data.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
|
@ -187,7 +164,7 @@ def test_bounding_box_augment_with_rotation_op(plot=False):
|
|||
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.BoundingBoxAug(c_vision.RandomRotation(90), 1)
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1)
|
||||
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
|
@ -216,7 +193,7 @@ def test_bounding_box_augment_with_crop_op(plot=False):
|
|||
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.BoundingBoxAug(c_vision.RandomCrop(90), 1)
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomCrop(90), 1)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
data_voc1 = data_voc1.map(input_columns=["annotation"],
|
||||
|
@ -244,7 +221,7 @@ def test_bounding_box_augment_valid_ratio_c(plot=False):
|
|||
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
|
||||
|
||||
test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1), 0.9)
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 0.9)
|
||||
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
|
||||
|
||||
# maps to fix annotations to minddata standard
|
||||
|
@ -274,7 +251,7 @@ def test_bounding_box_augment_invalid_ratio_c():
|
|||
|
||||
try:
|
||||
# ratio range is from 0 - 1
|
||||
test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1), 1.5)
|
||||
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1.5)
|
||||
# maps to fix annotations to minddata standard
|
||||
data_voc1 = data_voc1.map(input_columns=["annotation"],
|
||||
output_columns=["annotation"],
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
Testing the random horizontal flip with bounding boxes op in DE
|
||||
"""
|
||||
from enum import Enum
|
||||
from mindspore import log as logger
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as patches
|
||||
import numpy as np
|
||||
import mindspore.log as logger
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
|
@ -38,57 +38,42 @@ class BoxType(Enum):
|
|||
OnEdge = 4
|
||||
WrongShape = 5
|
||||
|
||||
|
||||
class AddBadAnnotation: # pylint: disable=too-few-public-methods
|
||||
def add_bad_annotation(img, bboxes, box_type):
|
||||
"""
|
||||
Used to add erroneous bounding boxes to object detection pipelines.
|
||||
Usage:
|
||||
>>> # Adds a box that covers the whole image. Good for testing edge cases
|
||||
>>> de = de.map(input_columns=["image", "annotation"],
|
||||
>>> output_columns=["image", "annotation"],
|
||||
>>> operations=AddBadAnnotation(BoxType.OnEdge))
|
||||
Used to generate erroneous bounding box examples on given img.
|
||||
:param img: image where the bounding boxes are.
|
||||
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
:param box_type: type of bad box
|
||||
:return: bboxes with bad examples added
|
||||
"""
|
||||
height = img.shape[0]
|
||||
width = img.shape[1]
|
||||
if box_type == BoxType.WidthOverflow:
|
||||
# use box that overflows on width
|
||||
return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
def __init__(self, box_type):
|
||||
self.box_type = box_type
|
||||
if box_type == BoxType.HeightOverflow:
|
||||
# use box that overflows on height
|
||||
return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
def __call__(self, img, bboxes):
|
||||
"""
|
||||
Used to generate erroneous bounding box examples on given img.
|
||||
:param img: image where the bounding boxes are.
|
||||
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
|
||||
:return: bboxes with bad examples added
|
||||
"""
|
||||
height = img.shape[0]
|
||||
width = img.shape[1]
|
||||
if self.box_type == BoxType.WidthOverflow:
|
||||
# use box that overflows on width
|
||||
return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32)
|
||||
if box_type == BoxType.NegativeXY:
|
||||
# use box with negative xy
|
||||
return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
if self.box_type == BoxType.HeightOverflow:
|
||||
# use box that overflows on height
|
||||
return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32)
|
||||
if box_type == BoxType.OnEdge:
|
||||
# use box that covers the whole image
|
||||
return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
if self.box_type == BoxType.NegativeXY:
|
||||
# use box with negative xy
|
||||
return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
if self.box_type == BoxType.OnEdge:
|
||||
# use box that covers the whole image
|
||||
return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32)
|
||||
|
||||
if self.box_type == BoxType.WrongShape:
|
||||
# use box that covers the whole image
|
||||
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
|
||||
return img, bboxes
|
||||
if box_type == BoxType.WrongShape:
|
||||
# use box that covers the whole image
|
||||
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
|
||||
return img, bboxes
|
||||
|
||||
|
||||
def h_flip(image):
|
||||
"""
|
||||
Apply the random_horizontal
|
||||
"""
|
||||
|
||||
# with the seed provided in this test case, it will always flip.
|
||||
# that's why we flip here too
|
||||
image = image[:, ::-1, :]
|
||||
return image
|
||||
|
@ -111,7 +96,7 @@ def check_bad_box(data, box_type, expected_error):
|
|||
data = data.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
columns_order=["image", "annotation"],
|
||||
operations=AddBadAnnotation(box_type)) # Add column for "annotation"
|
||||
operations=lambda img, bboxes: add_bad_annotation(img, bboxes, box_type))
|
||||
# map to apply ops
|
||||
data = data.map(input_columns=["image", "annotation"],
|
||||
output_columns=["image", "annotation"],
|
||||
|
|
Loading…
Reference in New Issue