forked from mindspore-Ecosystem/mindspore
!6998 [MSLITE][Develop] Refactor arithmetic_self and add fp16 kernel
Merge pull request !6998 from sunsuodong/arithmetic_self_fp16
This commit is contained in:
commit
ed4d839f39
|
@ -0,0 +1,110 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <math.h>
|
||||
#include "nnacl/fp16/arithmetic_self_fp16.h"
|
||||
|
||||
int ElementAbsFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = fabsf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementCosFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = cosf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementLogFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
if (input[i] <= 0) {
|
||||
return NNACL_ERRCODE_LOG_NEGATIVE_OR_ZERO;
|
||||
}
|
||||
output[i] = logf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementSquareFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = input[i] * input[i];
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementSqrtFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
if (input[i] < 0) {
|
||||
return NNACL_ERRCODE_SQRT_NEGATIVE;
|
||||
}
|
||||
output[i] = sqrtf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementRsqrtFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
if (input[i] <= 0) {
|
||||
return NNACL_ERRCODE_RSQRT_NEGATIVE_OR_ZERO;
|
||||
}
|
||||
output[i] = 1.f / sqrtf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementSinFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = sinf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementLogicalNotFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = (float)(!((bool)(input[i])));
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementRoundFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = round(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementFloorFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = floorf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementCeilFp16(float16_t *input, float16_t *output, int number) {
|
||||
for (int i = 0; i < number; ++i) {
|
||||
output[i] = ceil(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementNegativeFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; ++i) {
|
||||
output[i] = -input[i];
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
|
@ -0,0 +1,55 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_NNACL_FP16_ARITHMETIC_SELF_FP16_H_
|
||||
#define MINDSPORE_LITE_NNACL_FP16_ARITHMETIC_SELF_FP16_H_
|
||||
|
||||
#ifdef ENABLE_NEON
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
int ElementAbsFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementCosFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementLogFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementSquareFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementSqrtFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementRsqrtFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementSinFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementLogicalNotFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementRoundFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementFloorFp16(float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementCeilFp16(float16_t *input, float16_t *output, int number);
|
||||
|
||||
int ElementNegativeFp16(float16_t *input, float16_t *output, int element_size);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MINDSPORE_LITE_NNACL_FP16_ARITHMETIC_SELF_FP16_H_
|
|
@ -0,0 +1,142 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/fp16/arithmetic_self_fp16.h"
|
||||
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "nnacl/fp16/cast_fp16.h"
|
||||
#include "nnacl/fp16/arithmetic_self_fp16.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
namespace {
|
||||
typedef struct {
|
||||
int primitive_type_;
|
||||
ArithmeticSelfFp16Func func_;
|
||||
} TYPE_FUNC_INFO;
|
||||
} // namespace
|
||||
|
||||
ArithmeticSelfFp16Func ArithmeticSelfFp16CPUKernel::GetArithmeticSelfFp16Fun(int primitive_type) {
|
||||
TYPE_FUNC_INFO type_func_table[] = {{mindspore::schema::PrimitiveType_Abs, ElementAbsFp16},
|
||||
{mindspore::schema::PrimitiveType_Cos, ElementCosFp16},
|
||||
{mindspore::schema::PrimitiveType_Log, ElementLogFp16},
|
||||
{mindspore::schema::PrimitiveType_Square, ElementSquareFp16},
|
||||
{mindspore::schema::PrimitiveType_Sqrt, ElementSqrtFp16},
|
||||
{mindspore::schema::PrimitiveType_Rsqrt, ElementRsqrtFp16},
|
||||
{mindspore::schema::PrimitiveType_Sin, ElementSinFp16},
|
||||
{mindspore::schema::PrimitiveType_LogicalNot, ElementLogicalNotFp16},
|
||||
{mindspore::schema::PrimitiveType_Floor, ElementFloorFp16},
|
||||
{mindspore::schema::PrimitiveType_Ceil, ElementCeilFp16},
|
||||
{mindspore::schema::PrimitiveType_Round, ElementRoundFp16},
|
||||
{mindspore::schema::PrimitiveType_Neg, ElementNegativeFp16}};
|
||||
for (size_t i = 0; i < sizeof(type_func_table); i++) {
|
||||
if (type_func_table[i].primitive_type_ == primitive_type) {
|
||||
return type_func_table[i].func_;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
int ArithmeticSelfFp16CPUKernel::DoExecute(int task_id) {
|
||||
int elements_num = in_tensors_.at(0)->ElementsNum();
|
||||
int stride = UP_DIV(elements_num, op_parameter_->thread_num_);
|
||||
int offset = task_id * stride;
|
||||
int count = MSMIN(stride, elements_num - offset);
|
||||
if (count <= 0) {
|
||||
return RET_OK;
|
||||
}
|
||||
if (fp16_func_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Run function is null! ";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto ret = fp16_func_(input_fp16_ptr_ + offset, output_fp16_ptr_ + offset, count);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Run failed, illegal input! ";
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void ArithmeticSelfFp16CPUKernel::FreeInputAndOutput() {
|
||||
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
|
||||
context_->allocator->Free(input_fp16_ptr_);
|
||||
input_fp16_ptr_ = nullptr;
|
||||
}
|
||||
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
|
||||
context_->allocator->Free(output_fp16_ptr_);
|
||||
output_fp16_ptr_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
int ArithmeticSelfFp16CPUKernel::Run() {
|
||||
auto ret = Prepare();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Prepare fail! ret: " << ret;
|
||||
return ret;
|
||||
}
|
||||
auto input_tensor = in_tensors_.at(0);
|
||||
auto output_tensor = out_tensors_.at(0);
|
||||
input_fp16_ptr_ = ConvertInputFp32toFp16(input_tensor, context_);
|
||||
output_fp16_ptr_ = MallocOutputFp16(output_tensor, context_);
|
||||
if (input_fp16_ptr_ == nullptr || output_fp16_ptr_ == nullptr) {
|
||||
FreeInputAndOutput();
|
||||
MS_LOG(ERROR) << "input or output is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
ret = ParallelLaunch(this->context_->thread_pool_, ArithmeticSelfRun, this, op_parameter_->thread_num_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "ArithmeticSelfRun error error_code[" << ret << "]";
|
||||
}
|
||||
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
|
||||
Float16ToFloat32(output_fp16_ptr_, reinterpret_cast<float *>(output_tensor->MutableData()),
|
||||
output_tensor->ElementsNum());
|
||||
}
|
||||
FreeInputAndOutput();
|
||||
return ret;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuArithmeticSelfFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs,
|
||||
OpParameter *parameter, const lite::InnerContext *ctx,
|
||||
const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel = new (std::nothrow) ArithmeticSelfFp16CPUKernel(parameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new ArithmeticSelfFp16CPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Abs, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Cos, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Log, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Square, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Sqrt, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Rsqrt, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Sin, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_LogicalNot, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Floor, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Ceil, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Round, CpuArithmeticSelfFp16KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Neg, CpuArithmeticSelfFp16KernelCreator)
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,46 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_ARITHMETIC_SELF_FP16_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_ARITHMETIC_SELF_FP16_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/runtime/kernel/arm/fp32/arithmetic_self.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
typedef int (*ArithmeticSelfFp16Func)(float16_t *input, float16_t *output, int element_size);
|
||||
class ArithmeticSelfFp16CPUKernel : public ArithmeticSelfCPUKernel {
|
||||
public:
|
||||
explicit ArithmeticSelfFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive)
|
||||
: ArithmeticSelfCPUKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||
fp16_func_ = GetArithmeticSelfFp16Fun(parameter->type_);
|
||||
}
|
||||
~ArithmeticSelfFp16CPUKernel() override = default;
|
||||
|
||||
int Run() override;
|
||||
int DoExecute(int task_id) override;
|
||||
|
||||
private:
|
||||
void FreeInputAndOutput();
|
||||
ArithmeticSelfFp16Func GetArithmeticSelfFp16Fun(int primitive_type);
|
||||
ArithmeticSelfFp16Func fp16_func_ = nullptr;
|
||||
float16_t *input_fp16_ptr_ = nullptr;
|
||||
float16_t *output_fp16_ptr_ = nullptr;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_ARITHMETIC_SELF_FP16_H_
|
|
@ -13,99 +13,107 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/fp32/arithmetic_self.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
#include "nnacl/fp32/arithmetic_self.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
namespace {
|
||||
typedef struct {
|
||||
int primitive_type_;
|
||||
ArithmeticSelfFunc func_;
|
||||
} TYPE_FUNC_INFO;
|
||||
} // namespace
|
||||
|
||||
ArithmeticSelfFunc ArithmeticSelfCPUKernel::GetArithmeticSelfFun(int primitive_type) {
|
||||
TYPE_FUNC_INFO type_func_table[] = {{mindspore::schema::PrimitiveType_Abs, ElementAbs},
|
||||
{mindspore::schema::PrimitiveType_Cos, ElementCos},
|
||||
{mindspore::schema::PrimitiveType_Log, ElementLog},
|
||||
{mindspore::schema::PrimitiveType_Square, ElementSquare},
|
||||
{mindspore::schema::PrimitiveType_Sqrt, ElementSqrt},
|
||||
{mindspore::schema::PrimitiveType_Rsqrt, ElementRsqrt},
|
||||
{mindspore::schema::PrimitiveType_Sin, ElementSin},
|
||||
{mindspore::schema::PrimitiveType_LogicalNot, ElementLogicalNot},
|
||||
{mindspore::schema::PrimitiveType_Floor, ElementFloor},
|
||||
{mindspore::schema::PrimitiveType_Ceil, ElementCeil},
|
||||
{mindspore::schema::PrimitiveType_Round, ElementRound},
|
||||
{mindspore::schema::PrimitiveType_Neg, ElementNegative}};
|
||||
for (size_t i = 0; i < sizeof(type_func_table); i++) {
|
||||
if (type_func_table[i].primitive_type_ == primitive_type) {
|
||||
return type_func_table[i].func_;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
int ArithmeticSelfCPUKernel::Init() {
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
return ReSize();
|
||||
}
|
||||
|
||||
int ArithmeticSelfCPUKernel::ReSize() {
|
||||
data_size_ = in_tensors_[0]->ElementsNum();
|
||||
thread_sz_count_ = MSMIN(thread_count_, static_cast<int>(data_size_));
|
||||
thread_sz_stride_ = UP_DIV(data_size_, thread_sz_count_);
|
||||
return RET_OK;
|
||||
}
|
||||
int ArithmeticSelfCPUKernel::ReSize() { return RET_OK; }
|
||||
|
||||
int ArithmeticSelfRuns(void *cdata, int task_id) {
|
||||
auto g_kernel = reinterpret_cast<ArithmeticSelfCPUKernel *>(cdata);
|
||||
auto ret = g_kernel->DoArithmeticSelf(task_id);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "ArithmeticSelfRuns error task_id[" << task_id << "] error_code[" << ret << "]";
|
||||
return ret;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ArithmeticSelfCPUKernel::DoArithmeticSelf(int task_id) {
|
||||
int size = MSMIN(thread_sz_stride_, static_cast<int>(data_size_ - task_id * thread_sz_stride_));
|
||||
if (size <= 0) {
|
||||
int ArithmeticSelfCPUKernel::DoExecute(int task_id) {
|
||||
int elements_num = in_tensors_.at(0)->ElementsNum();
|
||||
int stride = UP_DIV(elements_num, op_parameter_->thread_num_);
|
||||
int offset = task_id * stride;
|
||||
int count = MSMIN(stride, elements_num - offset);
|
||||
if (count <= 0) {
|
||||
return RET_OK;
|
||||
}
|
||||
int offset = task_id * thread_sz_stride_;
|
||||
if (arithmeticSelf_run_) {
|
||||
auto ret = arithmeticSelf_run_(in_ptr_ + offset, out_ptr_ + offset, size);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Run failed, illegal input! ";
|
||||
return ret;
|
||||
}
|
||||
} else {
|
||||
if (func_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Run function is null! ";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
float *input_ptr = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
|
||||
float *output_ptr = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
|
||||
auto ret = func_(input_ptr + offset, output_ptr + offset, count);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Run failed, illegal input! ";
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
int ArithmeticSelfRun(void *cdata, int task_id) {
|
||||
auto kernel = reinterpret_cast<ArithmeticSelfCPUKernel *>(cdata);
|
||||
auto ret = kernel->DoExecute(task_id);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "ArithmeticSelfRuns error task_id[" << task_id << "] error_code[" << ret << "]";
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
int ArithmeticSelfCPUKernel::Run() {
|
||||
auto ret = Prepare();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
|
||||
MS_LOG(ERROR) << "Prepare fail! ret: " << ret;
|
||||
return ret;
|
||||
}
|
||||
auto input_tensor = in_tensors_.at(0);
|
||||
auto out_tensor = out_tensors_.at(0);
|
||||
in_ptr_ = reinterpret_cast<float *>(input_tensor->MutableData());
|
||||
out_ptr_ = reinterpret_cast<float *>(out_tensor->MutableData());
|
||||
ret = ParallelLaunch(this->context_->thread_pool_, ArithmeticSelfRuns, this, thread_sz_count_);
|
||||
ret = ParallelLaunch(this->context_->thread_pool_, ArithmeticSelfRun, this, op_parameter_->thread_num_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "ArithmeticSelfRun error error_code[" << ret << "]";
|
||||
return ret;
|
||||
}
|
||||
return RET_OK;
|
||||
return ret;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuArithmeticSelfFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::InnerContext *ctx,
|
||||
OpParameter *parameter, const lite::InnerContext *ctx,
|
||||
const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
MS_ASSERT(opParameter != nullptr);
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Creator failed, opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
auto *kernel = new (std::nothrow) ArithmeticSelfCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
auto *kernel = new (std::nothrow) ArithmeticSelfCPUKernel(parameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new ArithmeticSelfCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
|
|
|
@ -13,18 +13,12 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_ARITHMETIC_SELF_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_ARITHMETIC_SELF_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "nnacl/fp32/arithmetic_self.h"
|
||||
#include "nnacl/arithmetic_self_parameter.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "include/context.h"
|
||||
|
||||
using mindspore::lite::InnerContext;
|
||||
using mindspore::schema::PrimitiveType_Abs;
|
||||
using mindspore::schema::PrimitiveType_Ceil;
|
||||
using mindspore::schema::PrimitiveType_Cos;
|
||||
|
@ -39,73 +33,27 @@ using mindspore::schema::PrimitiveType_Sqrt;
|
|||
using mindspore::schema::PrimitiveType_Square;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
typedef int (*ArithmeticSelfFunc)(float *input, float *output, int element_size);
|
||||
class ArithmeticSelfCPUKernel : public LiteKernel {
|
||||
typedef int (*ArithmeticSelfRun)(float *input, float *output, int element_size);
|
||||
|
||||
public:
|
||||
explicit ArithmeticSelfCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive)
|
||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {
|
||||
switch (parameter->type_) {
|
||||
case PrimitiveType_Abs:
|
||||
arithmeticSelf_run_ = ElementAbs;
|
||||
break;
|
||||
case PrimitiveType_Cos:
|
||||
arithmeticSelf_run_ = ElementCos;
|
||||
break;
|
||||
case PrimitiveType_Log:
|
||||
arithmeticSelf_run_ = ElementLog;
|
||||
break;
|
||||
case PrimitiveType_Square:
|
||||
arithmeticSelf_run_ = ElementSquare;
|
||||
break;
|
||||
case PrimitiveType_Sqrt:
|
||||
arithmeticSelf_run_ = ElementSqrt;
|
||||
break;
|
||||
case PrimitiveType_Rsqrt:
|
||||
arithmeticSelf_run_ = ElementRsqrt;
|
||||
break;
|
||||
case PrimitiveType_Sin:
|
||||
arithmeticSelf_run_ = ElementSin;
|
||||
break;
|
||||
case PrimitiveType_LogicalNot:
|
||||
arithmeticSelf_run_ = ElementLogicalNot;
|
||||
break;
|
||||
case PrimitiveType_Floor:
|
||||
arithmeticSelf_run_ = ElementFloor;
|
||||
break;
|
||||
case PrimitiveType_Ceil:
|
||||
arithmeticSelf_run_ = ElementCeil;
|
||||
break;
|
||||
case PrimitiveType_Round:
|
||||
arithmeticSelf_run_ = ElementRound;
|
||||
break;
|
||||
case PrimitiveType_Neg:
|
||||
arithmeticSelf_run_ = ElementNegative;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
arithmeticSelfParameter_ = reinterpret_cast<ArithmeticSelfParameter *>(parameter);
|
||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||
func_ = GetArithmeticSelfFun(parameter->type_);
|
||||
}
|
||||
~ArithmeticSelfCPUKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override;
|
||||
int Run() override;
|
||||
int DoArithmeticSelf(int task_id);
|
||||
virtual int DoExecute(int task_id);
|
||||
|
||||
private:
|
||||
int thread_sz_count_;
|
||||
int thread_sz_stride_;
|
||||
size_t data_size_;
|
||||
ArithmeticSelfParameter *arithmeticSelfParameter_;
|
||||
ArithmeticSelfRun arithmeticSelf_run_;
|
||||
int thread_count_;
|
||||
float *in_ptr_;
|
||||
float *out_ptr_;
|
||||
ArithmeticSelfFunc GetArithmeticSelfFun(int primitive_type);
|
||||
ArithmeticSelfFunc func_;
|
||||
};
|
||||
int ArithmeticSelfRun(void *cdata, int task_id);
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_ARITHMETIC_SELF_H_
|
||||
|
|
Loading…
Reference in New Issue