forked from mindspore-Ecosystem/mindspore
Dealing with isolated nodes.
This commit is contained in:
parent
123baf6473
commit
e9b47a54d4
|
@ -806,6 +806,7 @@ FunctionBlockPtr Parser::ParseExpr(const FunctionBlockPtr &block, const py::obje
|
|||
// self.x = [xx, xx]
|
||||
// self.x.append()
|
||||
MS_LOG(DEBUG) << "The variables whose type is not parameter do not support assign operation.";
|
||||
block->AddIsolatedNode(call_node);
|
||||
} else {
|
||||
WriteAssignVars(block, target_node, call_node);
|
||||
}
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test graph clear statement. """
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_tensorarray_clear():
|
||||
"""
|
||||
Feature: Support clear is isolated node.
|
||||
Description: Support clear is isolated node.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, dtype, element_shape):
|
||||
super(Net, self).__init__()
|
||||
self.ta = nn.TensorArray(dtype=dtype, element_shape=element_shape)
|
||||
self.index_1 = 1
|
||||
self.index_2 = 30
|
||||
|
||||
def construct(self, input_1, input_2):
|
||||
size_1 = self.ta.size()
|
||||
self.ta.write(self.index_1, input_1)
|
||||
self.ta.write(self.index_2, input_2)
|
||||
size_2 = self.ta.size()
|
||||
self.ta.clear()
|
||||
size_3 = self.ta.size()
|
||||
return size_1, size_2, size_3
|
||||
|
||||
input_np_1 = np.random.randn(2, 3, 4, 5, 6).astype(np.int32)
|
||||
input_np_2 = np.random.randn(2, 3, 4, 5, 6).astype(np.int32)
|
||||
net = Net(dtype=ms.int32, element_shape=(2, 3, 4, 5, 6))
|
||||
out_ms = net(Tensor(input_np_1), Tensor(input_np_2))
|
||||
assert out_ms[0] == 0
|
||||
assert out_ms[1] == 31
|
||||
assert out_ms[2] == 0
|
Loading…
Reference in New Issue