Dealing with isolated nodes.

This commit is contained in:
Margaret_wangrui 2022-08-24 15:23:17 +08:00
parent 123baf6473
commit e9b47a54d4
2 changed files with 57 additions and 0 deletions

View File

@ -806,6 +806,7 @@ FunctionBlockPtr Parser::ParseExpr(const FunctionBlockPtr &block, const py::obje
// self.x = [xx, xx]
// self.x.append()
MS_LOG(DEBUG) << "The variables whose type is not parameter do not support assign operation.";
block->AddIsolatedNode(call_node);
} else {
WriteAssignVars(block, target_node, call_node);
}

View File

@ -0,0 +1,56 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test graph clear statement. """
import pytest
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor, context
context.set_context(mode=context.GRAPH_MODE)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensorarray_clear():
"""
Feature: Support clear is isolated node.
Description: Support clear is isolated node.
Expectation: No exception.
"""
class Net(nn.Cell):
def __init__(self, dtype, element_shape):
super(Net, self).__init__()
self.ta = nn.TensorArray(dtype=dtype, element_shape=element_shape)
self.index_1 = 1
self.index_2 = 30
def construct(self, input_1, input_2):
size_1 = self.ta.size()
self.ta.write(self.index_1, input_1)
self.ta.write(self.index_2, input_2)
size_2 = self.ta.size()
self.ta.clear()
size_3 = self.ta.size()
return size_1, size_2, size_3
input_np_1 = np.random.randn(2, 3, 4, 5, 6).astype(np.int32)
input_np_2 = np.random.randn(2, 3, 4, 5, 6).astype(np.int32)
net = Net(dtype=ms.int32, element_shape=(2, 3, 4, 5, 6))
out_ms = net(Tensor(input_np_1), Tensor(input_np_2))
assert out_ms[0] == 0
assert out_ms[1] == 31
assert out_ms[2] == 0