forked from mindspore-Ecosystem/mindspore
!35654 Add testcases for ScatterUpdateof and SetItem on dynamic shape tensors
Merge pull request !35654 from zhengzuohe/shrink_axis_mask
This commit is contained in:
commit
e7a32b1f53
|
@ -326,6 +326,7 @@ def get_scatter_nd_vmap_rule(prim, axis_size):
|
|||
@vmap_rules_getters.register(P.ScatterNdMin)
|
||||
@vmap_rules_getters.register(P.ScatterNdMax)
|
||||
@vmap_rules_getters.register(P.ScatterNdDiv)
|
||||
@vmap_rules_getters.register(P.ScatterNdUpdate)
|
||||
@vmap_rules_getters.register(P.ScatterUpdate)
|
||||
def get_scatter_op_vmap_rule(prim, axis_size):
|
||||
"""
|
||||
|
@ -344,6 +345,7 @@ def get_scatter_op_vmap_rule(prim, axis_size):
|
|||
"ScatterNdMin": P.ScatterNdMin,
|
||||
"ScatterNdMax": P.ScatterNdMax,
|
||||
"ScatterNdDiv": P.ScatterNdDiv,
|
||||
"ScatterNdUpdate": P.ScatterNdUpdate,
|
||||
"ScatterUpdate": P.ScatterNdUpdate
|
||||
}
|
||||
sactter_func_list = ["ScatterAdd", "ScatterMin", "ScatterMax", "ScatterDiv", "ScatterUpdate"]
|
||||
|
|
|
@ -246,6 +246,19 @@ class VmapNet(nn.Cell):
|
|||
return vmap(self.net, self.in_axes, self.out_axes)(self.inputx, indices, updates)
|
||||
|
||||
|
||||
class NestVmapNet(nn.Cell):
|
||||
def __init__(self, net, inputx, in_axes, out_axes):
|
||||
super(NestVmapNet, self).__init__()
|
||||
self.net = net
|
||||
self.in_axes = in_axes
|
||||
self.out_axes = out_axes
|
||||
self.inputx = Parameter(inputx, name="inputx")
|
||||
|
||||
def construct(self, indices, updates):
|
||||
return vmap(vmap(self.net, self.in_axes, self.out_axes), self.in_axes, self.out_axes)(
|
||||
self.inputx, indices, updates)
|
||||
|
||||
|
||||
def scatter_func_indices_vmap():
|
||||
inputx = Parameter(Tensor(np.array(
|
||||
[[[0, 1, 2], [3, 4, 5]], [[0, 1, 2], [3, 4, 5]], [[0, 1, 2], [3, 4, 5]]]
|
||||
|
@ -277,6 +290,33 @@ def scatter_func_updates_vmap():
|
|||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
|
||||
def scatter_func_updates_nest_vmap():
|
||||
inputx = Parameter(Tensor(np.array(
|
||||
[
|
||||
[[0.1, 1.0, 2.2], [3.0, 4.3, 5.5]],
|
||||
[[0.1, 1.0, 2.2], [3.0, 4.3, 5.5]]
|
||||
]
|
||||
).astype(np.float32)), name="inputx")
|
||||
indices = Tensor(np.array([0, 1]).astype(np.int32))
|
||||
updates = Tensor(np.array(
|
||||
[
|
||||
[[1.0, 0.1], [1.2, 1.3]],
|
||||
[[1.0, 0.1], [1.2, 1.3]]
|
||||
]
|
||||
).astype(np.float32))
|
||||
expected = np.array(
|
||||
[
|
||||
[[1.0, 0.1, 2.2], [1.2, 1.3, 5.5]],
|
||||
[[1.0, 0.1, 2.2], [1.2, 1.3, 5.5]]
|
||||
]
|
||||
).astype(np.float32)
|
||||
|
||||
# scatter_update
|
||||
output = NestVmapNet(ScatterFuncVmapNet("update"), inputx,
|
||||
(0, None, 0), 0)(indices, updates)
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
|
@ -435,3 +475,19 @@ def test_scatter_func_updates_vmap():
|
|||
scatter_func_updates_vmap()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
scatter_func_updates_vmap()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_func_updates_nest_vmap():
|
||||
"""
|
||||
Feature: test scatter_func nest vmap.
|
||||
Description: in_axes: (0, None, 0).
|
||||
Expectation: the result match with numpy result
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
scatter_func_updates_nest_vmap()
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
scatter_func_updates_nest_vmap()
|
||||
|
|
|
@ -0,0 +1,424 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import context, nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
|
||||
|
||||
class NumpySetItem():
|
||||
def __init__(self, index, value):
|
||||
super(NumpySetItem, self).__init__()
|
||||
self.index = index
|
||||
self.value = value
|
||||
|
||||
def __call__(self, tensor1, tensor2):
|
||||
tensor1[self.index] = self.value
|
||||
tensor2[self.index] = self.value
|
||||
return tensor1, tensor2
|
||||
|
||||
|
||||
class TensorSetItem(nn.Cell):
|
||||
def __init__(self, index, value):
|
||||
super(TensorSetItem, self).__init__()
|
||||
self.index = index
|
||||
self.value = value
|
||||
|
||||
def construct(self, tensor1, tensor2):
|
||||
tensor1[self.index] = self.value
|
||||
tensor2[self.index] = self.value
|
||||
return tensor1, tensor2
|
||||
|
||||
|
||||
def common_func(ms_net, np_net):
|
||||
x = Tensor(shape=[8, None, 3], dtype=mstype.float32)
|
||||
y = Tensor(shape=[None, 32, 3], dtype=mstype.float32)
|
||||
ms_net.set_inputs(x, y)
|
||||
input_np1 = np.arange(8 * 16 * 3).reshape(8, 16, 3).astype(np.float32)
|
||||
input_np2 = np.arange(16 * 32 * 3).reshape(16, 32, 3).astype(np.float32)
|
||||
out0, out1 = ms_net(Tensor(input_np1), Tensor(input_np2))
|
||||
out_np0, out_np1 = np_net(input_np1, input_np2)
|
||||
assert np.all(out0.asnumpy() == out_np0)
|
||||
assert np.all(out1.asnumpy() == out_np1)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_int_number():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is int, value is a number.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = 2
|
||||
value = 88.0
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_int_tensor():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is int, value is a tensor.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = 2
|
||||
value = Tensor(np.arange(3).reshape(
|
||||
(1 * 3)).astype(np.float32), mstype.float32)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value.asnumpy())
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_int_sequence():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is int, value is a sequence.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = 2
|
||||
value = (1.0, Tensor(5, mstype.float32), 8.0)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_tensor_number():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is tensor, value is a number.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = Tensor(
|
||||
np.array([[2, 0, 2], [0, 2, 0], [0, 2, 0]], np.int32), mstype.int32)
|
||||
value = 88.0
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index.asnumpy(), value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_tensor_tensor():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is tensor, value is a tensor.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = Tensor(
|
||||
np.array([[2, 0, 2], [0, 2, 0], [0, 2, 0]], np.int32), mstype.int32)
|
||||
value = Tensor(np.arange(3).reshape(
|
||||
(1 * 3)).astype(np.float32), mstype.float32)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index.asnumpy(), value.asnumpy())
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_tensor_sequence():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is tensor, value is a sequence.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = Tensor(
|
||||
np.array([[2, 0, 2], [0, 2, 0], [0, 2, 0]], np.int32), mstype.int32)
|
||||
value = (1.0, Tensor(5, mstype.float32), 8.0)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index.asnumpy(), value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_none_number():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is None, value is a number.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = None
|
||||
value = 88.0
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_none_tensor():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is None, value is a tensor.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = None
|
||||
value = Tensor(np.arange(3).reshape(
|
||||
(1 * 3)).astype(np.float32), mstype.float32)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value.asnumpy())
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_none_sequence():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is None, value is a sequence.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = None
|
||||
value = (1.0, Tensor(5, mstype.float32), 8.0)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_ellipsis_number():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is ..., value is a number.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = ...
|
||||
value = 88.0
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_ellipsis_tensor():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is ..., value is a tensor.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = ...
|
||||
value = Tensor(np.arange(3).reshape(
|
||||
(1 * 3)).astype(np.float32), mstype.float32)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value.asnumpy())
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_ellipsis_sequence():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is ..., value is a sequence.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = ...
|
||||
value = (1.0, Tensor(5, mstype.float32), 8.0)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_bool_number():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is bool(True), value is a number.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = True
|
||||
value = 88.0
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_bool_tensor():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is bool(True), value is a tensor.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = True
|
||||
value = Tensor(np.arange(3).reshape(
|
||||
(1 * 3)).astype(np.float32), mstype.float32)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value.asnumpy())
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_bool_sequence():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is bool(True), value is a sequence.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = True
|
||||
value = (1.0, Tensor(5, mstype.float32), 8.0)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_list_number():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is a list of int, value is a number.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = [0, 1]
|
||||
value = 88.0
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_list_tensor():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is al ist of bool and int, value is a tensor.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = [True, 5]
|
||||
value = Tensor(np.arange(3).reshape(
|
||||
(1 * 3)).astype(np.float32), mstype.float32)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value.asnumpy())
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_setitem_list_sequence():
|
||||
"""
|
||||
Feature: Test index value assignment for dynamic shape Tensor in feed mode.
|
||||
Description: The input shape is dynamic, the tensor index is a list of int, value is a sequence.
|
||||
Expectation: Assert the result is equal the numpy result.
|
||||
"""
|
||||
index = [0, 1]
|
||||
value = (1.0, Tensor(5, mstype.float32), 8.0)
|
||||
ms_net = TensorSetItem(index, value)
|
||||
np_net = NumpySetItem(index, value)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
common_func(ms_net, np_net)
|
Loading…
Reference in New Issue