forked from mindspore-Ecosystem/mindspore
add vm support for Expm1
This commit is contained in:
parent
fd045e9115
commit
e5419f7bd1
|
@ -422,6 +422,19 @@ def get_bprop_exp(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Expm1)
|
||||
def get_bprop_expm1(self):
|
||||
"""Grad definition for `Expm1` operation."""
|
||||
exp_ = P.Exp()
|
||||
|
||||
def bprop(x, out, dout):
|
||||
g = exp_(x)
|
||||
dx = g * dout
|
||||
return (dx,)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Minimum)
|
||||
def get_bprop_minimum(self):
|
||||
"""Grad definition for `Minimum` operation."""
|
||||
|
|
|
@ -83,6 +83,7 @@ from .strided_slice_d import _strided_slice_d_tbe
|
|||
from .strided_slice_grad_d import _strided_slice_grad_d_tbe
|
||||
from .split_d import _split_d_tbe
|
||||
from .exp import _exp_tbe
|
||||
from .expm1 import _expm1_tbe
|
||||
from .elu import _elu_tbe
|
||||
from .elu_grad import _elu_grad_tbe
|
||||
from .div import _div_tbe
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Expm1 op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
expm1_op_info = TBERegOp("Expm1") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("expm1.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("expm1") \
|
||||
.partial_flag(True) \
|
||||
.op_pattern("formatAgnostic") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(expm1_op_info)
|
||||
def _expm1_tbe():
|
||||
"""Expm1 TBE register"""
|
||||
return
|
|
@ -42,7 +42,7 @@ from .inner_ops import ScalarCast
|
|||
|
||||
from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, BitwiseXor,
|
||||
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd,
|
||||
Cos, Div, Equal, EqualCount, Exp, Erf, Erfc, Floor, FloorDiv, FloorMod, Acosh,
|
||||
Cos, Div, Equal, EqualCount, Exp, Expm1, Erf, Erfc, Floor, FloorDiv, FloorMod, Acosh,
|
||||
Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd,
|
||||
LogicalNot, LogicalOr, MatMul, Maximum,
|
||||
Minimum, Mul, Neg, NMSWithMask, NotEqual,
|
||||
|
@ -89,6 +89,7 @@ __all__ = [
|
|||
'Mul',
|
||||
'Pow',
|
||||
'Exp',
|
||||
'Expm1',
|
||||
'Rsqrt',
|
||||
'Sqrt',
|
||||
'Square',
|
||||
|
|
|
@ -1004,6 +1004,36 @@ class Exp(PrimitiveWithInfer):
|
|||
return x_type
|
||||
|
||||
|
||||
class Expm1(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns exponential then minus 1 of a tensor element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape as the `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([0.0, 1.0, 2.0, 4.0]), mindspore.float32)
|
||||
>>> expm1 = P.Expm1()
|
||||
>>> expm1(input_x)
|
||||
[ 0., 1.71828183, 6.3890561 , 53.59815003]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init Exp"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_type):
|
||||
validator.check_subclass("x", x_type, mstype.tensor, self.name)
|
||||
return x_type
|
||||
|
||||
|
||||
class Log(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns the natural logarithm of a tensor element-wise.
|
||||
|
|
|
@ -348,6 +348,10 @@ test_case_math_ops = [
|
|||
'block': P.Exp(),
|
||||
'desc_inputs': [[2, 3]],
|
||||
'desc_bprop': [[2, 3]]}),
|
||||
('Expm1', {
|
||||
'block': P.Expm1(),
|
||||
'desc_inputs': [[2, 3]],
|
||||
'desc_bprop': [[2, 3]]}),
|
||||
('Erf', {
|
||||
'block': P.Erf(),
|
||||
'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
|
||||
|
|
Loading…
Reference in New Issue