!4285 fix doc error

Merge pull request !4285 from yanghaitao/yht_fix_doc
This commit is contained in:
mindspore-ci-bot 2020-08-11 20:13:59 +08:00 committed by Gitee
commit e48293a58d
1 changed files with 12 additions and 14 deletions

View File

@ -1301,17 +1301,6 @@ class Dataset:
return self.children[0].get_repeat_count()
return 1
def get_class_indexing(self):
"""
Get the class index.
Return:
Dict, A str-to-int mapping from label name to index.
"""
if self.children:
return self.children[0].get_class_indexing()
raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self)))
def reset(self):
"""Reset the dataset for next epoch."""
@ -1448,7 +1437,7 @@ class MappableDataset(SourceDataset):
sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, , sn] is
provided, the dataset will be split into n datasets of size s1, size s2, , size sn
respectively. If the sum of all sizes does not equal the original dataset size, an
an error will occur.
error will occur.
If a list of floats [f1, f2, , fn] is provided, all floats must be between 0 and 1
and must sum to 1, otherwise an error will occur. The dataset will be split into n
Datasets of size round(f1*K), round(f2*K), , round(fn*K) where K is the size of the
@ -1543,7 +1532,16 @@ class DatasetOp(Dataset):
"""
# No need for __init__ since it is the same as the super's init
def get_class_indexing(self):
"""
Get the class index.
Return:
Dict, A str-to-int mapping from label name to index.
"""
if self.children:
return self.children[0].get_class_indexing()
raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self)))
class BucketBatchByLengthDataset(DatasetOp):
"""
@ -2506,7 +2504,7 @@ class ImageFolderDatasetV2(MappableDataset):
The generated dataset has two columns ['image', 'label'].
The shape of the image column is [image_size] if decode flag is False, or [H,W,C]
otherwise.
The type of the image tensor is uint8. The label is just a scalar uint64
The type of the image tensor is uint8. The label is just a scalar int32
tensor.
This dataset can take in a sampler. sampler and shuffle are mutually exclusive. Table
below shows what input args are allowed and their expected behavior.
@ -2578,7 +2576,7 @@ class ImageFolderDatasetV2(MappableDataset):
>>> # 2) read all samples (image files) from folder cat and folder dog with label 0 and 1
>>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir,class_indexing={"cat":0,"dog":1})
>>> # 3) read all samples (image files) in dataset_dir with extensions .JPEG and .png (case sensitive)
>>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir, extensions={".JPEG",".png"})
>>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir, extensions=[".JPEG",".png"])
"""
@check_imagefolderdatasetv2