forked from mindspore-Ecosystem/mindspore
!35284 [MD] Adding docstrings for minddata UT Python Part 4
Merge pull request !35284 from davidanugraha/add_dataset_test_comment_part4
This commit is contained in:
commit
e29229320e
|
@ -92,6 +92,7 @@
|
||||||
"mindspore/tests/ut/python/dataset/test_batch.py" "broad-except"
|
"mindspore/tests/ut/python/dataset/test_batch.py" "broad-except"
|
||||||
"mindspore/tests/ut/python/dataset/test_config.py" "broad-except"
|
"mindspore/tests/ut/python/dataset/test_config.py" "broad-except"
|
||||||
"mindspore/tests/ut/python/dataset/test_minddataset.py" "redefined-outer-name"
|
"mindspore/tests/ut/python/dataset/test_minddataset.py" "redefined-outer-name"
|
||||||
|
"mindspore/tests/ut/python/dataset/test_minddataset.py" "unused-variable"
|
||||||
"mindspore/tests/ut/python/dataset/test_minddataset_sampler.py" "redefined-outer-name"
|
"mindspore/tests/ut/python/dataset/test_minddataset_sampler.py" "redefined-outer-name"
|
||||||
"mindspore/tests/ut/python/dataset/test_serdes_dataset.py" "redefined-outer-name"
|
"mindspore/tests/ut/python/dataset/test_serdes_dataset.py" "redefined-outer-name"
|
||||||
"mindspore/tests/ut/python/dataset/test_serdes_dataset.py" "unused-import"
|
"mindspore/tests/ut/python/dataset/test_serdes_dataset.py" "unused-import"
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -223,6 +223,11 @@ def build_test_case_2maps(epochs, steps):
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_all_methods():
|
def test_callbacks_all_methods():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test Map op with 1 callback with various num_epochs and num_steps args combinations
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_all_methods")
|
logger.info("test_callbacks_all_methods")
|
||||||
|
|
||||||
build_test_case_1cb(1, 1)
|
build_test_case_1cb(1, 1)
|
||||||
|
@ -242,6 +247,11 @@ def test_callbacks_all_methods():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_var_step_size():
|
def test_callbacks_var_step_size():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test Map op with 1 callback with step_size=2 and various num_epochs and num_steps args combinations
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_var_step_size")
|
logger.info("test_callbacks_var_step_size")
|
||||||
|
|
||||||
build_test_case_1cb(1, 2, 2)
|
build_test_case_1cb(1, 2, 2)
|
||||||
|
@ -258,6 +268,11 @@ def test_callbacks_var_step_size():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_all_2cbs():
|
def test_callbacks_all_2cbs():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test Map op with 2 callbacks with various num_epochs and num_steps args combinations
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_all_2cbs")
|
logger.info("test_callbacks_all_2cbs")
|
||||||
|
|
||||||
build_test_case_2cbs(4, 1)
|
build_test_case_2cbs(4, 1)
|
||||||
|
@ -301,6 +316,11 @@ class Net(nn.Cell):
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_non_sink():
|
def test_callbacks_non_sink():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test callbacks with dataset_sink_mode=False in train
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_non_sink")
|
logger.info("test_callbacks_non_sink")
|
||||||
|
|
||||||
events = []
|
events = []
|
||||||
|
@ -325,6 +345,11 @@ def test_callbacks_non_sink():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_non_sink_batch_size2():
|
def test_callbacks_non_sink_batch_size2():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test callbacks with dataset_sink_mode=False in train after batch(2) is applied to the dataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_non_sink_batch_size2")
|
logger.info("test_callbacks_non_sink_batch_size2")
|
||||||
|
|
||||||
events = []
|
events = []
|
||||||
|
@ -349,6 +374,11 @@ def test_callbacks_non_sink_batch_size2():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_non_sink_mismatch_size():
|
def test_callbacks_non_sink_mismatch_size():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test callbacks with dataset_sink_mode=False in train with mismatch size
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_non_sink_mismatch_size")
|
logger.info("test_callbacks_non_sink_mismatch_size")
|
||||||
default_timeout = ds.config.get_callback_timeout()
|
default_timeout = ds.config.get_callback_timeout()
|
||||||
ds.config.set_callback_timeout(1)
|
ds.config.set_callback_timeout(1)
|
||||||
|
@ -370,6 +400,11 @@ def test_callbacks_non_sink_mismatch_size():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_validations():
|
def test_callbacks_validations():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test callbacks param in Map op with invalid argument
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_validations")
|
logger.info("test_callbacks_validations")
|
||||||
|
|
||||||
with pytest.raises(Exception) as err:
|
with pytest.raises(Exception) as err:
|
||||||
|
@ -397,6 +432,11 @@ def test_callbacks_validations():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_sink_simulation():
|
def test_callbacks_sink_simulation():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test callbacks under sink simulation
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_callback_sink_simulation")
|
logger.info("test_callback_sink_simulation")
|
||||||
|
|
||||||
events = []
|
events = []
|
||||||
|
@ -424,6 +464,11 @@ def test_callbacks_sink_simulation():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_repeat():
|
def test_callbacks_repeat():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test Map op with 1 callback with various num_epochs, num_steps, step_size, and repeat args combinations
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_repeat")
|
logger.info("test_callbacks_repeat")
|
||||||
|
|
||||||
build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=2)
|
build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=2)
|
||||||
|
@ -453,6 +498,11 @@ def test_callbacks_exceptions():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_train_end():
|
def test_callbacks_train_end():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test callback end op under sink simulation
|
||||||
|
Expectation: Runs successfully
|
||||||
|
"""
|
||||||
logger.info("test_callback_sink_simulation")
|
logger.info("test_callback_sink_simulation")
|
||||||
# No asserts are needed, just test there is no deadlock or exceptions
|
# No asserts are needed, just test there is no deadlock or exceptions
|
||||||
events = []
|
events = []
|
||||||
|
@ -469,6 +519,11 @@ def test_callbacks_train_end():
|
||||||
|
|
||||||
|
|
||||||
def test_callbacks_one_cb():
|
def test_callbacks_one_cb():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test callbacks with Begin, EpochBegin, EpochEnd, StepBegin, and StepEnd as the args
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_callbacks_one_cb")
|
logger.info("test_callbacks_one_cb")
|
||||||
|
|
||||||
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
|
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
|
||||||
|
@ -510,6 +565,11 @@ def test_callbacks_one_cb():
|
||||||
|
|
||||||
|
|
||||||
def test_clear_callback():
|
def test_clear_callback():
|
||||||
|
"""
|
||||||
|
Feature: Callback
|
||||||
|
Description: Test callback is removed for get_dataset_size and output_shape/type
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
logger.info("test_clear_callback")
|
logger.info("test_clear_callback")
|
||||||
|
|
||||||
# this test case will test that callback is removed for get_dataset_size and output_shape/type
|
# this test case will test that callback is removed for get_dataset_size and output_shape/type
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -24,6 +24,11 @@ import mindspore.dataset.transforms as data_trans
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_all():
|
def test_concatenate_op_all():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op with all input parameters provided
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([5., 6., 7., 8.], dtype=np.float),)
|
yield (np.array([5., 6., 7., 8.], dtype=np.float),)
|
||||||
|
|
||||||
|
@ -39,6 +44,11 @@ def test_concatenate_op_all():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_none():
|
def test_concatenate_op_none():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op with none of the input parameters provided
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([5., 6., 7., 8.], dtype=np.float),)
|
yield (np.array([5., 6., 7., 8.], dtype=np.float),)
|
||||||
|
|
||||||
|
@ -51,6 +61,11 @@ def test_concatenate_op_none():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_string():
|
def test_concatenate_op_string():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op on array of strings
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array(["ss", "ad"], dtype='S'),)
|
yield (np.array(["ss", "ad"], dtype='S'),)
|
||||||
|
|
||||||
|
@ -66,6 +81,11 @@ def test_concatenate_op_string():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_multi_input_string():
|
def test_concatenate_op_multi_input_string():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op on multi dimension array of strings
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
prepend_tensor = np.array(["dw", "df"], dtype='S')
|
prepend_tensor = np.array(["dw", "df"], dtype='S')
|
||||||
append_tensor = np.array(["dwsdf", "df"], dtype='S')
|
append_tensor = np.array(["dwsdf", "df"], dtype='S')
|
||||||
|
|
||||||
|
@ -82,6 +102,11 @@ def test_concatenate_op_multi_input_string():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_multi_input_numeric():
|
def test_concatenate_op_multi_input_numeric():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op on multi dimension array of ints
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
prepend_tensor = np.array([3, 5])
|
prepend_tensor = np.array([3, 5])
|
||||||
|
|
||||||
data = ([[1, 2]], [[3, 4]])
|
data = ([[1, 2]], [[3, 4]])
|
||||||
|
@ -97,6 +122,12 @@ def test_concatenate_op_multi_input_numeric():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_type_mismatch():
|
def test_concatenate_op_type_mismatch():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op where the data type of the original array dataset (float) has a mismatch
|
||||||
|
data type with tensor that will be concatenated (string)
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([3, 4], dtype=np.float),)
|
yield (np.array([3, 4], dtype=np.float),)
|
||||||
|
|
||||||
|
@ -112,6 +143,12 @@ def test_concatenate_op_type_mismatch():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_type_mismatch2():
|
def test_concatenate_op_type_mismatch2():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op where the data type of the original array dataset (string) has a mismatch
|
||||||
|
data type with tensor that will be concatenated (float)
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array(["ss", "ad"], dtype='S'),)
|
yield (np.array(["ss", "ad"], dtype='S'),)
|
||||||
|
|
||||||
|
@ -127,6 +164,11 @@ def test_concatenate_op_type_mismatch2():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_incorrect_dim():
|
def test_concatenate_op_incorrect_dim():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op using original dataset with incorrect dimension
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([["ss", "ad"], ["ss", "ad"]], dtype='S'),)
|
yield (np.array([["ss", "ad"], ["ss", "ad"]], dtype='S'),)
|
||||||
|
|
||||||
|
@ -142,12 +184,22 @@ def test_concatenate_op_incorrect_dim():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_wrong_axis():
|
def test_concatenate_op_wrong_axis():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op using wrong axis argument
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
with pytest.raises(ValueError) as error_info:
|
with pytest.raises(ValueError) as error_info:
|
||||||
data_trans.Concatenate(2)
|
data_trans.Concatenate(2)
|
||||||
assert "only 1D concatenation supported." in str(error_info.value)
|
assert "only 1D concatenation supported." in str(error_info.value)
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_negative_axis():
|
def test_concatenate_op_negative_axis():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op using negative axis argument
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([5., 6., 7., 8.], dtype=np.float),)
|
yield (np.array([5., 6., 7., 8.], dtype=np.float),)
|
||||||
|
|
||||||
|
@ -163,6 +215,11 @@ def test_concatenate_op_negative_axis():
|
||||||
|
|
||||||
|
|
||||||
def test_concatenate_op_incorrect_input_dim():
|
def test_concatenate_op_incorrect_input_dim():
|
||||||
|
"""
|
||||||
|
Feature: Concatenate op
|
||||||
|
Description: Test Concatenate op using array that we would like to concatenate with incorrect dimensions
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
prepend_tensor = np.array([["ss", "ad"], ["ss", "ad"]], dtype='S')
|
prepend_tensor = np.array([["ss", "ad"], ["ss", "ad"]], dtype='S')
|
||||||
|
|
||||||
with pytest.raises(ValueError) as error_info:
|
with pytest.raises(ValueError) as error_info:
|
||||||
|
|
|
@ -32,8 +32,8 @@ def count_unequal_element(data_expected, data_me, rtol, atol):
|
||||||
|
|
||||||
def test_create_dct_none():
|
def test_create_dct_none():
|
||||||
"""
|
"""
|
||||||
Feature: CreateDct
|
Feature: Create DCT transformation
|
||||||
Description: Test CreateDct in eager mode
|
Description: Test create_dct in eager mode with no normalization
|
||||||
Expectation: The returned result is as expected
|
Expectation: The returned result is as expected
|
||||||
"""
|
"""
|
||||||
expect = np.array([[2.00000000, 1.84775901],
|
expect = np.array([[2.00000000, 1.84775901],
|
||||||
|
@ -46,8 +46,8 @@ def test_create_dct_none():
|
||||||
|
|
||||||
def test_create_dct_ortho():
|
def test_create_dct_ortho():
|
||||||
"""
|
"""
|
||||||
Feature: CreateDct
|
Feature: Create DCT transformation
|
||||||
Description: Test CreateDct in eager mode
|
Description: Test create_dct in eager mode with orthogonal normalization
|
||||||
Expectation: The returned result is as expected
|
Expectation: The returned result is as expected
|
||||||
"""
|
"""
|
||||||
output = create_dct(1, 3, NormMode.ORTHO)
|
output = create_dct(1, 3, NormMode.ORTHO)
|
||||||
|
@ -59,9 +59,9 @@ def test_create_dct_ortho():
|
||||||
|
|
||||||
def test_createdct_invalid_input():
|
def test_createdct_invalid_input():
|
||||||
"""
|
"""
|
||||||
Feature: CreateDct
|
Feature: Create DCT transformation
|
||||||
Description: Error detection
|
Description: Test create_dct with invalid inputs
|
||||||
Expectation: Return error
|
Expectation: Error is raised as expected
|
||||||
"""
|
"""
|
||||||
def test_invalid_input(test_name, n_mfcc, n_mels, norm, error, error_msg):
|
def test_invalid_input(test_name, n_mfcc, n_mels, norm, error, error_msg):
|
||||||
logger.info("Test CreateDct with bad input: {0}".format(test_name))
|
logger.info("Test CreateDct with bad input: {0}".format(test_name))
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -38,7 +38,9 @@ def diff_mse(in1, in2):
|
||||||
|
|
||||||
def test_cifar10():
|
def test_cifar10():
|
||||||
"""
|
"""
|
||||||
dataset parameter
|
Feature: Epoch Control op
|
||||||
|
Description: Test num_epochs as tuple iterator param for Cifar10Dataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test dataset parameter")
|
logger.info("Test dataset parameter")
|
||||||
data_dir_10 = "../data/dataset/testCifar10Data"
|
data_dir_10 = "../data/dataset/testCifar10Data"
|
||||||
|
@ -70,7 +72,9 @@ def test_cifar10():
|
||||||
|
|
||||||
def test_decode_op():
|
def test_decode_op():
|
||||||
"""
|
"""
|
||||||
Test Decode op
|
Feature: Epoch Control op
|
||||||
|
Description: Test num_epochs as dict iterator param for dataset which Decode op has been applied onto it
|
||||||
|
Expectation: Output is equal to the expected output before iterator is stopped, then correct error is raised
|
||||||
"""
|
"""
|
||||||
logger.info("test_decode_op")
|
logger.info("test_decode_op")
|
||||||
|
|
||||||
|
@ -125,7 +129,9 @@ def generator_1d():
|
||||||
|
|
||||||
def test_generator_dict_0():
|
def test_generator_dict_0():
|
||||||
"""
|
"""
|
||||||
test generator dict 0
|
Feature: Epoch Control op
|
||||||
|
Description: Test dict iterator inside the loop declaration for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -142,7 +148,9 @@ def test_generator_dict_0():
|
||||||
|
|
||||||
def test_generator_dict_1():
|
def test_generator_dict_1():
|
||||||
"""
|
"""
|
||||||
test generator dict 1
|
Feature: Epoch Control op
|
||||||
|
Description: Test dict iterator outside the epoch for loop for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -162,7 +170,9 @@ def test_generator_dict_1():
|
||||||
|
|
||||||
def test_generator_dict_2():
|
def test_generator_dict_2():
|
||||||
"""
|
"""
|
||||||
test generator dict 2
|
Feature: Epoch Control op
|
||||||
|
Description: Test dict iterator with num_epochs=-1 for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output and iterator never shutdown
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -187,7 +197,9 @@ def test_generator_dict_2():
|
||||||
|
|
||||||
def test_generator_dict_3():
|
def test_generator_dict_3():
|
||||||
"""
|
"""
|
||||||
test generator dict 3
|
Feature: Epoch Control op
|
||||||
|
Description: Test dict iterator with num_epochs=-1 followed by stop for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output before stop, then error is raised
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -213,7 +225,10 @@ def test_generator_dict_3():
|
||||||
|
|
||||||
def test_generator_dict_4():
|
def test_generator_dict_4():
|
||||||
"""
|
"""
|
||||||
test generator dict 4
|
Feature: Epoch Control op
|
||||||
|
Description: Test dict iterator by fetching data beyond the specified number of epochs for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output when fetching data under the specified num_epochs,
|
||||||
|
then error is raised due to EOF buffer encountered
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -236,7 +251,11 @@ def test_generator_dict_4():
|
||||||
|
|
||||||
def test_generator_dict_4_1():
|
def test_generator_dict_4_1():
|
||||||
"""
|
"""
|
||||||
test generator dict 4_1
|
Feature: Epoch Control op
|
||||||
|
Description: Test dict iterator by fetching data beyond the specified number of epochs where num_epochs=1 so
|
||||||
|
Epoch Control op will not be injected, using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output when fetching data under the specified num_epochs,
|
||||||
|
then error is raised due to EOF buffer encountered
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -260,7 +279,11 @@ def test_generator_dict_4_1():
|
||||||
|
|
||||||
def test_generator_dict_4_2():
|
def test_generator_dict_4_2():
|
||||||
"""
|
"""
|
||||||
test generator dict 4_2
|
Feature: Epoch Control op
|
||||||
|
Description: Test dict iterator by fetching data beyond the specified number of epochs where num_epochs=1 so
|
||||||
|
Epoch Control op will not be injected, after repeat op with num_repeat=1, using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output when fetching data under the specified num_epochs,
|
||||||
|
then error is raised due to EOF buffer encountered
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -286,7 +309,11 @@ def test_generator_dict_4_2():
|
||||||
|
|
||||||
def test_generator_dict_5():
|
def test_generator_dict_5():
|
||||||
"""
|
"""
|
||||||
test generator dict 5
|
Feature: Epoch Control op
|
||||||
|
Description: Test dict iterator by fetching data below (2 loops) then
|
||||||
|
beyond the specified number of epochs using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output when fetching data under the specified num_epochs,
|
||||||
|
then error is raised due to EOF buffer encountered
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -320,7 +347,9 @@ def test_generator_dict_5():
|
||||||
|
|
||||||
def test_generator_tuple_0():
|
def test_generator_tuple_0():
|
||||||
"""
|
"""
|
||||||
test generator tuple 0
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator inside the loop declaration for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -337,7 +366,9 @@ def test_generator_tuple_0():
|
||||||
|
|
||||||
def test_generator_tuple_1():
|
def test_generator_tuple_1():
|
||||||
"""
|
"""
|
||||||
test generator tuple 1
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator outside the epoch for loop for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -357,7 +388,9 @@ def test_generator_tuple_1():
|
||||||
|
|
||||||
def test_generator_tuple_2():
|
def test_generator_tuple_2():
|
||||||
"""
|
"""
|
||||||
test generator tuple 2
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator with num_epochs=-1 for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output and iterator never shutdown
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -381,7 +414,9 @@ def test_generator_tuple_2():
|
||||||
|
|
||||||
def test_generator_tuple_3():
|
def test_generator_tuple_3():
|
||||||
"""
|
"""
|
||||||
test generator tuple 3
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator with num_epochs=-1 followed by stop for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output before stop, then error is raised
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -406,7 +441,10 @@ def test_generator_tuple_3():
|
||||||
|
|
||||||
def test_generator_tuple_4():
|
def test_generator_tuple_4():
|
||||||
"""
|
"""
|
||||||
test generator tuple 4
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator by fetching data beyond the specified num_epochs for 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output when fetching data under the specified num_epochs,
|
||||||
|
then error is raised due to EOF buffer encountered
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -429,7 +467,11 @@ def test_generator_tuple_4():
|
||||||
|
|
||||||
def test_generator_tuple_5():
|
def test_generator_tuple_5():
|
||||||
"""
|
"""
|
||||||
test generator tuple 5
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator by fetching data below (2 loops) then
|
||||||
|
beyond the specified number of epochs using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output when fetching data under the specified num_epochs,
|
||||||
|
then error is raised due to EOF buffer encountered
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -462,7 +504,11 @@ def test_generator_tuple_5():
|
||||||
# Test with repeat
|
# Test with repeat
|
||||||
def test_generator_tuple_repeat_1():
|
def test_generator_tuple_repeat_1():
|
||||||
"""
|
"""
|
||||||
test generator tuple repeat 1
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator by applying Repeat op first, next fetching data below (2 loops) then
|
||||||
|
beyond the specified number of epochs using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output when fetching data under the specified num_epochs,
|
||||||
|
then error is raised due to EOF buffer encountered
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -496,7 +542,11 @@ def test_generator_tuple_repeat_1():
|
||||||
# Test with repeat
|
# Test with repeat
|
||||||
def test_generator_tuple_repeat_repeat_1():
|
def test_generator_tuple_repeat_repeat_1():
|
||||||
"""
|
"""
|
||||||
test generator tuple repeat repeat 1
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator by applying Repeat op first twice, next fetching data below (2 loops) then
|
||||||
|
beyond the specified number of epochs using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output when fetching data under the specified num_epochs,
|
||||||
|
then error is raised due to EOF buffer encountered
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -530,7 +580,10 @@ def test_generator_tuple_repeat_repeat_1():
|
||||||
|
|
||||||
def test_generator_tuple_repeat_repeat_2():
|
def test_generator_tuple_repeat_repeat_2():
|
||||||
"""
|
"""
|
||||||
test generator tuple repeat repeat 2
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator with num_epochs=-1 by applying Repeat op first twice, next
|
||||||
|
stop op is called on the iterator using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output before stop is called, then error is raised
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -557,7 +610,10 @@ def test_generator_tuple_repeat_repeat_2():
|
||||||
|
|
||||||
def test_generator_tuple_repeat_repeat_3():
|
def test_generator_tuple_repeat_repeat_3():
|
||||||
"""
|
"""
|
||||||
test generator tuple repeat repeat 3
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator by applying Repeat op first twice, then do 2 loops
|
||||||
|
that the sum of iteration is equal to the specified num_epochs using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -587,7 +643,10 @@ def test_generator_tuple_repeat_repeat_3():
|
||||||
|
|
||||||
def test_generator_tuple_infinite_repeat_repeat_1():
|
def test_generator_tuple_infinite_repeat_repeat_1():
|
||||||
"""
|
"""
|
||||||
test generator tuple infinite repeat repeat 1
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator by applying infinite Repeat then Repeat with specified num_repeat,
|
||||||
|
then iterate using iterator using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -610,7 +669,10 @@ def test_generator_tuple_infinite_repeat_repeat_1():
|
||||||
|
|
||||||
def test_generator_tuple_infinite_repeat_repeat_2():
|
def test_generator_tuple_infinite_repeat_repeat_2():
|
||||||
"""
|
"""
|
||||||
test generator tuple infinite repeat repeat 2
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator by applying Repeat with specified num_repeat then infinite Repeat,
|
||||||
|
then iterate using iterator using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -633,7 +695,10 @@ def test_generator_tuple_infinite_repeat_repeat_2():
|
||||||
|
|
||||||
def test_generator_tuple_infinite_repeat_repeat_3():
|
def test_generator_tuple_infinite_repeat_repeat_3():
|
||||||
"""
|
"""
|
||||||
test generator tuple infinite repeat repeat 3
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator by applying infinite Repeat first twice,
|
||||||
|
then iterate using iterator using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -656,7 +721,10 @@ def test_generator_tuple_infinite_repeat_repeat_3():
|
||||||
|
|
||||||
def test_generator_tuple_infinite_repeat_repeat_4():
|
def test_generator_tuple_infinite_repeat_repeat_4():
|
||||||
"""
|
"""
|
||||||
test generator tuple infinite repeat repeat 4
|
Feature: Epoch Control op
|
||||||
|
Description: Test tuple iterator with num_epochs=1 by applying infinite Repeat first twice,
|
||||||
|
then iterate using iterator using 1D GeneratorDataset 0-63
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
@ -679,7 +747,10 @@ def test_generator_tuple_infinite_repeat_repeat_4():
|
||||||
|
|
||||||
def test_generator_reusedataset():
|
def test_generator_reusedataset():
|
||||||
"""
|
"""
|
||||||
test generator reusedataset
|
Feature: Epoch Control op
|
||||||
|
Description: Test iterator and other op (Repeat/Batch) on 1D GeneratorDataset 0-63 which previously
|
||||||
|
has been applied with iterator and other op (Repeat/Batch)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1D Generator : 0 - 63")
|
logger.info("Test 1D Generator : 0 - 63")
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -22,6 +22,11 @@ import mindspore.dataset.transforms as data_trans
|
||||||
|
|
||||||
|
|
||||||
def test_fillop_basic():
|
def test_fillop_basic():
|
||||||
|
"""
|
||||||
|
Feature: Fill op
|
||||||
|
Description: Test Fill op basic usage (positive int onto an array of uint8)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([4, 5, 6, 7], dtype=np.uint8),)
|
yield (np.array([4, 5, 6, 7], dtype=np.uint8),)
|
||||||
|
|
||||||
|
@ -35,6 +40,11 @@ def test_fillop_basic():
|
||||||
|
|
||||||
|
|
||||||
def test_fillop_down_type_cast():
|
def test_fillop_down_type_cast():
|
||||||
|
"""
|
||||||
|
Feature: Fill op
|
||||||
|
Description: Test Fill op with a negative number onto an array of unsigned int8
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([4, 5, 6, 7], dtype=np.uint8),)
|
yield (np.array([4, 5, 6, 7], dtype=np.uint8),)
|
||||||
|
|
||||||
|
@ -48,6 +58,11 @@ def test_fillop_down_type_cast():
|
||||||
|
|
||||||
|
|
||||||
def test_fillop_up_type_cast():
|
def test_fillop_up_type_cast():
|
||||||
|
"""
|
||||||
|
Feature: Fill op
|
||||||
|
Description: Test Fill op with a int onto an array of floats
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([4, 5, 6, 7], dtype=np.float),)
|
yield (np.array([4, 5, 6, 7], dtype=np.float),)
|
||||||
|
|
||||||
|
@ -61,6 +76,11 @@ def test_fillop_up_type_cast():
|
||||||
|
|
||||||
|
|
||||||
def test_fillop_string():
|
def test_fillop_string():
|
||||||
|
"""
|
||||||
|
Feature: Fill op
|
||||||
|
Description: Test Fill op with a string onto an array of strings
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array(["45555", "45555"], dtype='S'),)
|
yield (np.array(["45555", "45555"], dtype='S'),)
|
||||||
|
|
||||||
|
@ -74,6 +94,11 @@ def test_fillop_string():
|
||||||
|
|
||||||
|
|
||||||
def test_fillop_bytes():
|
def test_fillop_bytes():
|
||||||
|
"""
|
||||||
|
Feature: Fill op
|
||||||
|
Description: Test Fill op with bytes onto an array of strings
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array(["A", "B", "C"], dtype='S'),)
|
yield (np.array(["A", "B", "C"], dtype='S'),)
|
||||||
|
|
||||||
|
@ -87,6 +112,11 @@ def test_fillop_bytes():
|
||||||
|
|
||||||
|
|
||||||
def test_fillop_error_handling():
|
def test_fillop_error_handling():
|
||||||
|
"""
|
||||||
|
Feature: Fill op
|
||||||
|
Description: Test Fill op with a mismatch data type (string onto an array of ints)
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array([4, 4, 4, 4]),)
|
yield (np.array([4, 4, 4, 4]),)
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
# Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -22,8 +22,12 @@ DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||||
|
|
||||||
|
|
||||||
# test for predicate
|
|
||||||
def test_diff_predicate_func():
|
def test_diff_predicate_func():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using predicate function as an arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def test_filter(predicate_func):
|
def test_filter(predicate_func):
|
||||||
transforms = [
|
transforms = [
|
||||||
cde.Decode(),
|
cde.Decode(),
|
||||||
|
@ -58,8 +62,12 @@ def generator_1d():
|
||||||
yield (np.array(i),)
|
yield (np.array(i),)
|
||||||
|
|
||||||
|
|
||||||
# test with GeneratorDataset
|
|
||||||
def test_filter_by_generator_with_no():
|
def test_filter_by_generator_with_no():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset_f = dataset.filter(predicate=lambda data: data < 11, num_parallel_workers=4)
|
dataset_f = dataset.filter(predicate=lambda data: data < 11, num_parallel_workers=4)
|
||||||
num_iter = 0
|
num_iter = 0
|
||||||
|
@ -69,8 +77,12 @@ def test_filter_by_generator_with_no():
|
||||||
num_iter += 1
|
num_iter += 1
|
||||||
|
|
||||||
|
|
||||||
# test with repeatOp before
|
|
||||||
def test_filter_by_generator_with_repeat():
|
def test_filter_by_generator_with_repeat():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Repeat op before
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset_r = dataset.repeat(4)
|
dataset_r = dataset.repeat(4)
|
||||||
dataset_f = dataset_r.filter(predicate=filter_func_ge, num_parallel_workers=4)
|
dataset_f = dataset_r.filter(predicate=filter_func_ge, num_parallel_workers=4)
|
||||||
|
@ -87,8 +99,12 @@ def test_filter_by_generator_with_repeat():
|
||||||
assert ret_data[index] == expected_rs[ii]
|
assert ret_data[index] == expected_rs[ii]
|
||||||
|
|
||||||
|
|
||||||
# test with repeatOp after
|
|
||||||
def test_filter_by_generator_with_repeat_after():
|
def test_filter_by_generator_with_repeat_after():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Repeat op after
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset_f = dataset.filter(predicate=filter_func_ge, num_parallel_workers=4)
|
dataset_f = dataset.filter(predicate=filter_func_ge, num_parallel_workers=4)
|
||||||
dataset_r = dataset_f.repeat(4)
|
dataset_r = dataset_f.repeat(4)
|
||||||
|
@ -113,8 +129,12 @@ def filter_func_batch_after(data):
|
||||||
return data <= 20
|
return data <= 20
|
||||||
|
|
||||||
|
|
||||||
# test with batchOp before
|
|
||||||
def test_filter_by_generator_with_batch():
|
def test_filter_by_generator_with_batch():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Batch op before
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset_b = dataset.batch(4)
|
dataset_b = dataset.batch(4)
|
||||||
dataset_f = dataset_b.filter(predicate=filter_func_batch, num_parallel_workers=4)
|
dataset_f = dataset_b.filter(predicate=filter_func_batch, num_parallel_workers=4)
|
||||||
|
@ -129,8 +149,12 @@ def test_filter_by_generator_with_batch():
|
||||||
assert ret_data[2][0] == 8
|
assert ret_data[2][0] == 8
|
||||||
|
|
||||||
|
|
||||||
# test with batchOp after
|
|
||||||
def test_filter_by_generator_with_batch_after():
|
def test_filter_by_generator_with_batch_after():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Batch op after
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset_f = dataset.filter(predicate=filter_func_batch_after, num_parallel_workers=4)
|
dataset_f = dataset.filter(predicate=filter_func_batch_after, num_parallel_workers=4)
|
||||||
dataset_b = dataset_f.batch(4)
|
dataset_b = dataset_f.batch(4)
|
||||||
|
@ -149,8 +173,12 @@ def filter_func_shuffle(data):
|
||||||
return data <= 20
|
return data <= 20
|
||||||
|
|
||||||
|
|
||||||
# test with batchOp before
|
|
||||||
def test_filter_by_generator_with_shuffle():
|
def test_filter_by_generator_with_shuffle():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Shuffle op before
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset_s = dataset.shuffle(4)
|
dataset_s = dataset.shuffle(4)
|
||||||
dataset_f = dataset_s.filter(predicate=filter_func_shuffle, num_parallel_workers=4)
|
dataset_f = dataset_s.filter(predicate=filter_func_shuffle, num_parallel_workers=4)
|
||||||
|
@ -164,8 +192,12 @@ def filter_func_shuffle_after(data):
|
||||||
return data <= 20
|
return data <= 20
|
||||||
|
|
||||||
|
|
||||||
# test with batchOp after
|
|
||||||
def test_filter_by_generator_with_shuffle_after():
|
def test_filter_by_generator_with_shuffle_after():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Shuffle op after
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset_f = dataset.filter(predicate=filter_func_shuffle_after, num_parallel_workers=4)
|
dataset_f = dataset.filter(predicate=filter_func_shuffle_after, num_parallel_workers=4)
|
||||||
dataset_s = dataset_f.shuffle(4)
|
dataset_s = dataset_f.shuffle(4)
|
||||||
|
@ -194,8 +226,12 @@ def filter_func_zip_after(data1):
|
||||||
return data1 <= 20
|
return data1 <= 20
|
||||||
|
|
||||||
|
|
||||||
# test with zipOp before
|
|
||||||
def test_filter_by_generator_with_zip():
|
def test_filter_by_generator_with_zip():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Zip op before
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset1 = ds.GeneratorDataset(generator_1d_zip1, ["data1"])
|
dataset1 = ds.GeneratorDataset(generator_1d_zip1, ["data1"])
|
||||||
dataset2 = ds.GeneratorDataset(generator_1d_zip2, ["data2"])
|
dataset2 = ds.GeneratorDataset(generator_1d_zip2, ["data2"])
|
||||||
dataz = ds.zip((dataset1, dataset2))
|
dataz = ds.zip((dataset1, dataset2))
|
||||||
|
@ -212,8 +248,12 @@ def test_filter_by_generator_with_zip():
|
||||||
assert ret_data[5]["data2"] == 105
|
assert ret_data[5]["data2"] == 105
|
||||||
|
|
||||||
|
|
||||||
# test with zipOp after
|
|
||||||
def test_filter_by_generator_with_zip_after():
|
def test_filter_by_generator_with_zip_after():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Zip op after
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset1 = ds.GeneratorDataset(generator_1d_zip1, ["data1"])
|
dataset1 = ds.GeneratorDataset(generator_1d_zip1, ["data1"])
|
||||||
dataset2 = ds.GeneratorDataset(generator_1d_zip1, ["data2"])
|
dataset2 = ds.GeneratorDataset(generator_1d_zip1, ["data2"])
|
||||||
dt1 = dataset1.filter(predicate=filter_func_zip_after, num_parallel_workers=4)
|
dt1 = dataset1.filter(predicate=filter_func_zip_after, num_parallel_workers=4)
|
||||||
|
@ -258,8 +298,12 @@ def func_map_part(data_col1):
|
||||||
return data_col1
|
return data_col1
|
||||||
|
|
||||||
|
|
||||||
# test with map
|
|
||||||
def test_filter_by_generator_with_map_all_col():
|
def test_filter_by_generator_with_map_all_col():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Map op before and Filter op is applied to all input columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_mc(12), ["col1", "col2"])
|
dataset = ds.GeneratorDataset(generator_mc(12), ["col1", "col2"])
|
||||||
dataset_map = dataset.map(operations=func_map_part, input_columns=["col1"], output_columns=["col1"])
|
dataset_map = dataset.map(operations=func_map_part, input_columns=["col1"], output_columns=["col1"])
|
||||||
# dataset_map = dataset.map(operations=func_map_part)
|
# dataset_map = dataset.map(operations=func_map_part)
|
||||||
|
@ -274,8 +318,13 @@ def test_filter_by_generator_with_map_all_col():
|
||||||
assert ret_data[1] == 1
|
assert ret_data[1] == 1
|
||||||
|
|
||||||
|
|
||||||
# test with map
|
|
||||||
def test_filter_by_generator_with_map_part_col():
|
def test_filter_by_generator_with_map_part_col():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Map op before.
|
||||||
|
Filter op is only applied partially to the input columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_mc(12), ["col1", "col2"])
|
dataset = ds.GeneratorDataset(generator_mc(12), ["col1", "col2"])
|
||||||
dataset_map = dataset.map(operations=func_map_part, input_columns=["col1"], output_columns=["out1"])
|
dataset_map = dataset.map(operations=func_map_part, input_columns=["col1"], output_columns=["out1"])
|
||||||
|
|
||||||
|
@ -294,8 +343,12 @@ def filter_func_rename(data):
|
||||||
return data > 8
|
return data > 8
|
||||||
|
|
||||||
|
|
||||||
# test with rename before
|
|
||||||
def test_filter_by_generator_with_rename():
|
def test_filter_by_generator_with_rename():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Rename op before
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset_b = dataset.rename(input_columns=["data"], output_columns=["col1"])
|
dataset_b = dataset.rename(input_columns=["data"], output_columns=["col1"])
|
||||||
dataset_f = dataset_b.filter(predicate=filter_func_rename, num_parallel_workers=4)
|
dataset_f = dataset_b.filter(predicate=filter_func_rename, num_parallel_workers=4)
|
||||||
|
@ -309,7 +362,6 @@ def test_filter_by_generator_with_rename():
|
||||||
assert ret_data[54] == 63
|
assert ret_data[54] == 63
|
||||||
|
|
||||||
|
|
||||||
# test input_column
|
|
||||||
def filter_func_input_column1(col1, col2):
|
def filter_func_input_column1(col1, col2):
|
||||||
_ = col2
|
_ = col2
|
||||||
return col1[0] < 8
|
return col1[0] < 8
|
||||||
|
@ -324,8 +376,12 @@ def filter_func_input_column3(col1):
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
# test with input_columns
|
|
||||||
def test_filter_by_generator_with_input_column():
|
def test_filter_by_generator_with_input_column():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with input columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_mc(64), ["col1", "col2"])
|
dataset = ds.GeneratorDataset(generator_mc(64), ["col1", "col2"])
|
||||||
dataset_map = dataset.map(operations=func_map_part, input_columns=["col1"], output_columns=["out1"])
|
dataset_map = dataset.map(operations=func_map_part, input_columns=["col1"], output_columns=["out1"])
|
||||||
dataset_f1 = dataset_map.filter(input_columns=["out1", "col2"], predicate=filter_func_input_column1,
|
dataset_f1 = dataset_map.filter(input_columns=["out1", "col2"], predicate=filter_func_input_column1,
|
||||||
|
@ -343,7 +399,6 @@ def test_filter_by_generator_with_input_column():
|
||||||
assert ret_data[7] == 7
|
assert ret_data[7] == 7
|
||||||
|
|
||||||
|
|
||||||
# test kFilterPartial
|
|
||||||
def generator_mc_p0(maxid=20):
|
def generator_mc_p0(maxid=20):
|
||||||
for i in range(maxid):
|
for i in range(maxid):
|
||||||
yield (np.array([i]), np.array([i + 100]))
|
yield (np.array([i]), np.array([i + 100]))
|
||||||
|
@ -362,8 +417,13 @@ def filter_func_Partial_0(col1, col2, col3, col4):
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
# test with row_data_buffer > 1
|
|
||||||
def test_filter_by_generator_Partial0():
|
def test_filter_by_generator_Partial0():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Zip op before.
|
||||||
|
Filter op is only partially applied on the input columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"])
|
dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"])
|
||||||
dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"])
|
dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"])
|
||||||
dataset_zip = ds.zip((dataset1, dataset2))
|
dataset_zip = ds.zip((dataset1, dataset2))
|
||||||
|
@ -375,8 +435,13 @@ def test_filter_by_generator_Partial0():
|
||||||
assert ret[6] == 12
|
assert ret[6] == 12
|
||||||
|
|
||||||
|
|
||||||
# test with row_data_buffer > 1
|
|
||||||
def test_filter_by_generator_Partial1():
|
def test_filter_by_generator_Partial1():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Zip op before and Map op after.
|
||||||
|
Filter op is only partially applied on the input columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"])
|
dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"])
|
||||||
dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"])
|
dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"])
|
||||||
dataset_zip = ds.zip((dataset1, dataset2))
|
dataset_zip = ds.zip((dataset1, dataset2))
|
||||||
|
@ -389,8 +454,13 @@ def test_filter_by_generator_Partial1():
|
||||||
assert ret[6] == 412
|
assert ret[6] == 412
|
||||||
|
|
||||||
|
|
||||||
# test with row_data_buffer > 1
|
|
||||||
def test_filter_by_generator_Partial2():
|
def test_filter_by_generator_Partial2():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Zip op after and Map op after the Zip op.
|
||||||
|
Filter op is only partially applied on the input columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"])
|
dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"])
|
||||||
dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"])
|
dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"])
|
||||||
|
|
||||||
|
@ -421,8 +491,13 @@ def generator_big(maxid=20):
|
||||||
yield (np.array([i]), np.array([[i, i + 1], [i + 2, i + 3]]))
|
yield (np.array([i]), np.array([[i, i + 1], [i + 2, i + 3]]))
|
||||||
|
|
||||||
|
|
||||||
# test with row_data_buffer > 1
|
|
||||||
def test_filter_by_generator_Partial():
|
def test_filter_by_generator_Partial():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Shuffle op before.
|
||||||
|
Filter op is only partially applied on the input columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(source=(lambda: generator_mc(99)), column_names=["col1", "col2"])
|
dataset = ds.GeneratorDataset(source=(lambda: generator_mc(99)), column_names=["col1", "col2"])
|
||||||
dataset_s = dataset.shuffle(4)
|
dataset_s = dataset.shuffle(4)
|
||||||
dataset_f1 = dataset_s.filter(input_columns=["col1", "col2"], predicate=filter_func_Partial, num_parallel_workers=1)
|
dataset_f1 = dataset_s.filter(input_columns=["col1", "col2"], predicate=filter_func_Partial, num_parallel_workers=1)
|
||||||
|
@ -436,8 +511,12 @@ def filter_func_cifar(col1, col2):
|
||||||
return col2 % 3 == 0
|
return col2 % 3 == 0
|
||||||
|
|
||||||
|
|
||||||
# test with cifar10
|
|
||||||
def test_filte_case_dataset_cifar10():
|
def test_filte_case_dataset_cifar10():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using Cifar10Dataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
||||||
dataset_c = ds.Cifar10Dataset(dataset_dir=DATA_DIR_10, num_samples=100000, shuffle=False)
|
dataset_c = ds.Cifar10Dataset(dataset_dir=DATA_DIR_10, num_samples=100000, shuffle=False)
|
||||||
dataset_f1 = dataset_c.filter(input_columns=["image", "label"], predicate=filter_func_cifar, num_parallel_workers=1)
|
dataset_f1 = dataset_c.filter(input_columns=["image", "label"], predicate=filter_func_cifar, num_parallel_workers=1)
|
||||||
|
@ -446,8 +525,6 @@ def test_filte_case_dataset_cifar10():
|
||||||
assert item["label"] % 3 == 0
|
assert item["label"] % 3 == 0
|
||||||
|
|
||||||
|
|
||||||
# column id sort
|
|
||||||
|
|
||||||
def generator_sort1(maxid=20):
|
def generator_sort1(maxid=20):
|
||||||
for i in range(maxid):
|
for i in range(maxid):
|
||||||
yield (np.array([i]), np.array([i + 100]), np.array([i + 200]))
|
yield (np.array([i]), np.array([i + 100]), np.array([i + 200]))
|
||||||
|
@ -468,6 +545,11 @@ def filter_func_map_sort(col1, col2, col3):
|
||||||
|
|
||||||
|
|
||||||
def test_filter_by_generator_with_map_all_sort():
|
def test_filter_by_generator_with_map_all_sort():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with Zip op before, Filter op is applied to all input columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset1 = ds.GeneratorDataset(generator_sort1(10), ["col1", "col2", "col3"])
|
dataset1 = ds.GeneratorDataset(generator_sort1(10), ["col1", "col2", "col3"])
|
||||||
dataset2 = ds.GeneratorDataset(generator_sort2(10), ["col4 ", "col5", "col6"])
|
dataset2 = ds.GeneratorDataset(generator_sort2(10), ["col4 ", "col5", "col6"])
|
||||||
|
|
||||||
|
@ -485,6 +567,11 @@ def test_filter_by_generator_with_map_all_sort():
|
||||||
|
|
||||||
|
|
||||||
def test_filter_by_generator_get_dataset_size():
|
def test_filter_by_generator_get_dataset_size():
|
||||||
|
"""
|
||||||
|
Feature: Filter op
|
||||||
|
Description: Test Filter op using GeneratorDataset with get_dataset_size after
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
dataset = ds.GeneratorDataset(generator_1d, ["data"])
|
||||||
dataset = dataset.filter(predicate=filter_func_shuffle_after, num_parallel_workers=4)
|
dataset = dataset.filter(predicate=filter_func_shuffle_after, num_parallel_workers=4)
|
||||||
data_sie = dataset.get_dataset_size()
|
data_sie = dataset.get_dataset_size()
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
# Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -164,7 +164,11 @@ def add_and_remove_nlp_compress_file():
|
||||||
|
|
||||||
|
|
||||||
def test_nlp_compress_data(add_and_remove_nlp_compress_file):
|
def test_nlp_compress_data(add_and_remove_nlp_compress_file):
|
||||||
"""tutorial for nlp minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test compressing NLP MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = []
|
data = []
|
||||||
for row_id in range(16):
|
for row_id in range(16):
|
||||||
data.append({
|
data.append({
|
||||||
|
@ -196,7 +200,11 @@ def test_nlp_compress_data(add_and_remove_nlp_compress_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_writer_tutorial():
|
def test_cv_minddataset_writer_tutorial():
|
||||||
"""tutorial for cv dataset writer."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset FileWriter basic usage
|
||||||
|
Expectation: Runs successfully
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
paths = ["{}{}".format(file_name, str(x).rjust(1, '0'))
|
paths = ["{}{}".format(file_name, str(x).rjust(1, '0'))
|
||||||
for x in range(FILES_NUM)]
|
for x in range(FILES_NUM)]
|
||||||
|
@ -226,7 +234,11 @@ def test_cv_minddataset_writer_tutorial():
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_tutorial(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_tutorial(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test partition (using num_shards and shard_id) on MindDataset basic usage
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -249,7 +261,11 @@ def test_cv_minddataset_partition_tutorial(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_num_samples_0(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_num_samples_0(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test partition (using num_shards and shard_id) on MindDataset with num_samples=1
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -275,7 +291,12 @@ def test_cv_minddataset_partition_num_samples_0(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_num_samples_1(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_num_samples_1(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test partition (using num_shards and shard_id) on MindDataset
|
||||||
|
with num_samples > 1 but num_samples <= dataset size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -301,7 +322,12 @@ def test_cv_minddataset_partition_num_samples_1(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_num_samples_2(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_num_samples_2(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test partition (using num_shards and shard_id) on MindDataset
|
||||||
|
with num_samples > 1 but num_samples > dataset size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -325,8 +351,14 @@ def test_cv_minddataset_partition_num_samples_2(add_and_remove_cv_file):
|
||||||
assert partitions(5, 2) == 2
|
assert partitions(5, 2) == 2
|
||||||
assert partitions(9, 2) == 2
|
assert partitions(9, 2) == 2
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_num_samples_3(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_num_samples_3(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test partition (using num_shards=1 and shard_id) on MindDataset
|
||||||
|
with num_samples > 1 and num_samples = dataset size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -342,8 +374,14 @@ def test_cv_minddataset_partition_num_samples_3(add_and_remove_cv_file):
|
||||||
|
|
||||||
assert num_iter == 5
|
assert num_iter == 5
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_tutorial_check_shuffle_result(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_tutorial_check_shuffle_result(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test partition (using num_shards=1 and shard_id) on MindDataset
|
||||||
|
and check that the result is not shuffled
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
num_shards = 3
|
num_shards = 3
|
||||||
|
@ -383,7 +421,12 @@ def test_cv_minddataset_partition_tutorial_check_shuffle_result(add_and_remove_c
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_tutorial_check_whole_reshuffle_result_per_epoch(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_tutorial_check_whole_reshuffle_result_per_epoch(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test partition (using num_shards=1 and shard_id) on MindDataset
|
||||||
|
and check that the whole result under multiple epochs is not shuffled
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -419,7 +462,11 @@ def test_cv_minddataset_partition_tutorial_check_whole_reshuffle_result_per_epoc
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_check_shuffle_result(add_and_remove_cv_file):
|
def test_cv_minddataset_check_shuffle_result(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset after Repeat op is applied and check that the result is not shuffled
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -514,7 +561,11 @@ def test_cv_minddataset_check_shuffle_result(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_dataset_size(add_and_remove_cv_file):
|
def test_cv_minddataset_dataset_size(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test get_dataset_size on MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -538,7 +589,11 @@ def test_cv_minddataset_dataset_size(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_repeat_reshuffle(add_and_remove_cv_file):
|
def test_cv_minddataset_repeat_reshuffle(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset where after multiple Map ops and repeat op the result is not shuffled
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "label"]
|
columns_list = ["data", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -570,7 +625,11 @@ def test_cv_minddataset_repeat_reshuffle(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_batch_size_larger_than_records(add_and_remove_cv_file):
|
def test_cv_minddataset_batch_size_larger_than_records(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset when batch_size in Batch op is larger than records
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "label"]
|
columns_list = ["data", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -595,7 +654,11 @@ def test_cv_minddataset_batch_size_larger_than_records(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_issue_888(add_and_remove_cv_file):
|
def test_cv_minddataset_issue_888(add_and_remove_cv_file):
|
||||||
"""issue 888 test."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset by applying Shuffle op followed by Repeat op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "label"]
|
columns_list = ["data", "label"]
|
||||||
num_readers = 2
|
num_readers = 2
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -609,7 +672,11 @@ def test_cv_minddataset_issue_888(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_file_list(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_file_list(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset using list of files
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -633,7 +700,11 @@ def test_cv_minddataset_reader_file_list(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_one_partition(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_one_partition(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset using list of one file
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -656,19 +727,23 @@ def test_cv_minddataset_reader_one_partition(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_two_dataset(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_two_dataset(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
CV1_FILE_NAME = "../data/mindrecord/test_cv_minddataset_reader_two_dataset_1.mindrecord"
|
Feature: MindDataset
|
||||||
CV2_FILE_NAME = "../data/mindrecord/test_cv_minddataset_reader_two_dataset_2.mindrecord"
|
Description: Test read on MindDataset using 2 datasets that are written with FileWriter
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
|
cv1_file_name = "../data/mindrecord/test_cv_minddataset_reader_two_dataset_1.mindrecord"
|
||||||
|
cv2_file_name = "../data/mindrecord/test_cv_minddataset_reader_two_dataset_2.mindrecord"
|
||||||
try:
|
try:
|
||||||
if os.path.exists(CV1_FILE_NAME):
|
if os.path.exists(cv1_file_name):
|
||||||
os.remove(CV1_FILE_NAME)
|
os.remove(cv1_file_name)
|
||||||
if os.path.exists("{}.db".format(CV1_FILE_NAME)):
|
if os.path.exists("{}.db".format(cv1_file_name)):
|
||||||
os.remove("{}.db".format(CV1_FILE_NAME))
|
os.remove("{}.db".format(cv1_file_name))
|
||||||
if os.path.exists(CV2_FILE_NAME):
|
if os.path.exists(cv2_file_name):
|
||||||
os.remove(CV2_FILE_NAME)
|
os.remove(cv2_file_name)
|
||||||
if os.path.exists("{}.db".format(CV2_FILE_NAME)):
|
if os.path.exists("{}.db".format(cv2_file_name)):
|
||||||
os.remove("{}.db".format(CV2_FILE_NAME))
|
os.remove("{}.db".format(cv2_file_name))
|
||||||
writer = FileWriter(CV1_FILE_NAME, 1)
|
writer = FileWriter(cv1_file_name, 1)
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
cv_schema_json = {"id": {"type": "int32"},
|
cv_schema_json = {"id": {"type": "int32"},
|
||||||
"file_name": {"type": "string"},
|
"file_name": {"type": "string"},
|
||||||
|
@ -679,7 +754,7 @@ def test_cv_minddataset_reader_two_dataset(add_and_remove_cv_file):
|
||||||
writer.write_raw_data(data)
|
writer.write_raw_data(data)
|
||||||
writer.commit()
|
writer.commit()
|
||||||
|
|
||||||
writer = FileWriter(CV2_FILE_NAME, 1)
|
writer = FileWriter(cv2_file_name, 1)
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
cv_schema_json = {"id": {"type": "int32"},
|
cv_schema_json = {"id": {"type": "int32"},
|
||||||
"file_name": {"type": "string"},
|
"file_name": {"type": "string"},
|
||||||
|
@ -692,7 +767,7 @@ def test_cv_minddataset_reader_two_dataset(add_and_remove_cv_file):
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
data_set = ds.MindDataset([file_name + str(x) for x in range(FILES_NUM)] + [CV1_FILE_NAME, CV2_FILE_NAME],
|
data_set = ds.MindDataset([file_name + str(x) for x in range(FILES_NUM)] + [cv1_file_name, cv2_file_name],
|
||||||
columns_list, num_readers)
|
columns_list, num_readers)
|
||||||
assert data_set.get_dataset_size() == 30
|
assert data_set.get_dataset_size() == 30
|
||||||
num_iter = 0
|
num_iter = 0
|
||||||
|
@ -710,29 +785,34 @@ def test_cv_minddataset_reader_two_dataset(add_and_remove_cv_file):
|
||||||
num_iter += 1
|
num_iter += 1
|
||||||
assert num_iter == 30
|
assert num_iter == 30
|
||||||
except Exception as error:
|
except Exception as error:
|
||||||
if os.path.exists(CV1_FILE_NAME):
|
if os.path.exists(cv1_file_name):
|
||||||
os.remove(CV1_FILE_NAME)
|
os.remove(cv1_file_name)
|
||||||
if os.path.exists("{}.db".format(CV1_FILE_NAME)):
|
if os.path.exists("{}.db".format(cv1_file_name)):
|
||||||
os.remove("{}.db".format(CV1_FILE_NAME))
|
os.remove("{}.db".format(cv1_file_name))
|
||||||
if os.path.exists(CV2_FILE_NAME):
|
if os.path.exists(cv2_file_name):
|
||||||
os.remove(CV2_FILE_NAME)
|
os.remove(cv2_file_name)
|
||||||
if os.path.exists("{}.db".format(CV2_FILE_NAME)):
|
if os.path.exists("{}.db".format(cv2_file_name)):
|
||||||
os.remove("{}.db".format(CV2_FILE_NAME))
|
os.remove("{}.db".format(cv2_file_name))
|
||||||
raise error
|
raise error
|
||||||
else:
|
else:
|
||||||
if os.path.exists(CV1_FILE_NAME):
|
if os.path.exists(cv1_file_name):
|
||||||
os.remove(CV1_FILE_NAME)
|
os.remove(cv1_file_name)
|
||||||
if os.path.exists("{}.db".format(CV1_FILE_NAME)):
|
if os.path.exists("{}.db".format(cv1_file_name)):
|
||||||
os.remove("{}.db".format(CV1_FILE_NAME))
|
os.remove("{}.db".format(cv1_file_name))
|
||||||
if os.path.exists(CV2_FILE_NAME):
|
if os.path.exists(cv2_file_name):
|
||||||
os.remove(CV2_FILE_NAME)
|
os.remove(cv2_file_name)
|
||||||
if os.path.exists("{}.db".format(CV2_FILE_NAME)):
|
if os.path.exists("{}.db".format(cv2_file_name)):
|
||||||
os.remove("{}.db".format(CV2_FILE_NAME))
|
os.remove("{}.db".format(cv2_file_name))
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_two_dataset_partition(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_two_dataset_partition(add_and_remove_cv_file):
|
||||||
CV1_FILE_NAME = "../data/mindrecord/test_cv_minddataset_reader_two_dataset_partition_1"
|
"""
|
||||||
paths = ["{}{}".format(CV1_FILE_NAME, str(x).rjust(1, '0'))
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset using two datasets that are partitioned into two lists
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
|
cv1_file_name = "../data/mindrecord/test_cv_minddataset_reader_two_dataset_partition_1"
|
||||||
|
paths = ["{}{}".format(cv1_file_name, str(x).rjust(1, '0'))
|
||||||
for x in range(FILES_NUM)]
|
for x in range(FILES_NUM)]
|
||||||
try:
|
try:
|
||||||
for x in paths:
|
for x in paths:
|
||||||
|
@ -740,7 +820,7 @@ def test_cv_minddataset_reader_two_dataset_partition(add_and_remove_cv_file):
|
||||||
os.remove("{}".format(x))
|
os.remove("{}".format(x))
|
||||||
if os.path.exists("{}.db".format(x)):
|
if os.path.exists("{}.db".format(x)):
|
||||||
os.remove("{}.db".format(x))
|
os.remove("{}.db".format(x))
|
||||||
writer = FileWriter(CV1_FILE_NAME, FILES_NUM)
|
writer = FileWriter(cv1_file_name, FILES_NUM)
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
cv_schema_json = {"id": {"type": "int32"},
|
cv_schema_json = {"id": {"type": "int32"},
|
||||||
"file_name": {"type": "string"},
|
"file_name": {"type": "string"},
|
||||||
|
@ -755,7 +835,7 @@ def test_cv_minddataset_reader_two_dataset_partition(add_and_remove_cv_file):
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
data_set = ds.MindDataset([file_name + str(x) for x in range(2)] +
|
data_set = ds.MindDataset([file_name + str(x) for x in range(2)] +
|
||||||
[CV1_FILE_NAME + str(x) for x in range(2, 4)],
|
[cv1_file_name + str(x) for x in range(2, 4)],
|
||||||
columns_list, num_readers)
|
columns_list, num_readers)
|
||||||
assert data_set.get_dataset_size() < 20
|
assert data_set.get_dataset_size() < 20
|
||||||
num_iter = 0
|
num_iter = 0
|
||||||
|
@ -784,7 +864,11 @@ def test_cv_minddataset_reader_two_dataset_partition(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_basic_tutorial(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_basic_tutorial(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read on MindDataset tutorial
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -807,7 +891,11 @@ def test_cv_minddataset_reader_basic_tutorial(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_nlp_minddataset_reader_basic_tutorial(add_and_remove_nlp_file):
|
def test_nlp_minddataset_reader_basic_tutorial(add_and_remove_nlp_file):
|
||||||
"""tutorial for nlp minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read on NLP MindDataset tutorial
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
data_set = ds.MindDataset(file_name + "0", None, num_readers)
|
data_set = ds.MindDataset(file_name + "0", None, num_readers)
|
||||||
|
@ -836,7 +924,11 @@ def test_nlp_minddataset_reader_basic_tutorial(add_and_remove_nlp_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_basic_tutorial_5_epoch(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_basic_tutorial_5_epoch(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read on MindDataset tutorial with 5 epochs
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -853,7 +945,11 @@ def test_cv_minddataset_reader_basic_tutorial_5_epoch(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_basic_tutorial_5_epoch_with_batch(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_basic_tutorial_5_epoch_with_batch(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read on MindDataset tutorial with 5 epochs after Batch op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "label"]
|
columns_list = ["data", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -882,7 +978,11 @@ def test_cv_minddataset_reader_basic_tutorial_5_epoch_with_batch(add_and_remove_
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_no_columns(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_no_columns(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset with no columns_list
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
data_set = ds.MindDataset(file_name + "0")
|
data_set = ds.MindDataset(file_name + "0")
|
||||||
assert data_set.get_dataset_size() == 10
|
assert data_set.get_dataset_size() == 10
|
||||||
|
@ -903,7 +1003,11 @@ def test_cv_minddataset_reader_no_columns(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_repeat_tutorial(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_repeat_tutorial(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset after Repeat op is applied on the dataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -1117,6 +1221,11 @@ def inputs(vectors, maxlen=50):
|
||||||
|
|
||||||
|
|
||||||
def test_write_with_multi_bytes_and_array_and_read_by_MindDataset():
|
def test_write_with_multi_bytes_and_array_and_read_by_MindDataset():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test write multiple bytes and arrays using FileWriter and read them by MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
mindrecord_file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
mindrecord_file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
try:
|
try:
|
||||||
if os.path.exists("{}".format(mindrecord_file_name)):
|
if os.path.exists("{}".format(mindrecord_file_name)):
|
||||||
|
@ -1373,6 +1482,11 @@ def test_write_with_multi_bytes_and_array_and_read_by_MindDataset():
|
||||||
|
|
||||||
|
|
||||||
def test_write_with_multi_bytes_and_MindDataset():
|
def test_write_with_multi_bytes_and_MindDataset():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test write multiple bytes using FileWriter and read them by MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
mindrecord_file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
mindrecord_file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
try:
|
try:
|
||||||
data = [{"file_name": "001.jpg", "label": 43,
|
data = [{"file_name": "001.jpg", "label": 43,
|
||||||
|
@ -1554,6 +1668,11 @@ def test_write_with_multi_bytes_and_MindDataset():
|
||||||
|
|
||||||
|
|
||||||
def test_write_with_multi_array_and_MindDataset():
|
def test_write_with_multi_array_and_MindDataset():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test write multiple arrays using FileWriter and read them by MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
mindrecord_file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
mindrecord_file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
try:
|
try:
|
||||||
data = [{"source_sos_ids": np.array([1, 2, 3, 4, 5], dtype=np.int64),
|
data = [{"source_sos_ids": np.array([1, 2, 3, 4, 5], dtype=np.int64),
|
||||||
|
@ -1757,6 +1876,11 @@ def test_write_with_multi_array_and_MindDataset():
|
||||||
|
|
||||||
|
|
||||||
def test_numpy_generic():
|
def test_numpy_generic():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test write numpy generic data types using FileWriter and read them by MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
paths = ["{}{}".format(file_name, str(x).rjust(1, '0'))
|
paths = ["{}{}".format(file_name, str(x).rjust(1, '0'))
|
||||||
for x in range(FILES_NUM)]
|
for x in range(FILES_NUM)]
|
||||||
|
@ -1804,6 +1928,12 @@ def test_numpy_generic():
|
||||||
|
|
||||||
|
|
||||||
def test_write_with_float32_float64_float32_array_float64_array_and_MindDataset():
|
def test_write_with_float32_float64_float32_array_float64_array_and_MindDataset():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test write float32, float64, array of float32, and array of float64 using
|
||||||
|
FileWriter and read them by MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
mindrecord_file_name = "test_write_with_float32_float64_float32_array_float64_array_and_MindDataset.mindrecord"
|
mindrecord_file_name = "test_write_with_float32_float64_float32_array_float64_array_and_MindDataset.mindrecord"
|
||||||
try:
|
try:
|
||||||
data = [{"float32_array": np.array([1.2, 2.78, 3.1234, 4.9871, 5.12341], dtype=np.float32),
|
data = [{"float32_array": np.array([1.2, 2.78, 3.1234, 4.9871, 5.12341], dtype=np.float32),
|
||||||
|
@ -1996,7 +2126,13 @@ def create_multi_mindrecord_files():
|
||||||
os.remove("{}".format(filename))
|
os.remove("{}".format(filename))
|
||||||
os.remove("{}.db".format(filename))
|
os.remove("{}.db".format(filename))
|
||||||
|
|
||||||
|
|
||||||
def test_shuffle_with_global_infile_files(create_multi_mindrecord_files):
|
def test_shuffle_with_global_infile_files(create_multi_mindrecord_files):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test without and with shuffle args for MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
ds.config.set_seed(1)
|
ds.config.set_seed(1)
|
||||||
datas_all = []
|
datas_all = []
|
||||||
index = 0
|
index = 0
|
||||||
|
@ -2233,7 +2369,13 @@ def test_shuffle_with_global_infile_files(create_multi_mindrecord_files):
|
||||||
shard_count += 1
|
shard_count += 1
|
||||||
assert origin_index != current_index
|
assert origin_index != current_index
|
||||||
|
|
||||||
|
|
||||||
def test_distributed_shuffle_with_global_infile_files(create_multi_mindrecord_files):
|
def test_distributed_shuffle_with_global_infile_files(create_multi_mindrecord_files):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test distributed MindDataset (with num_shards and shard_id) without and with shuffle args
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
ds.config.set_seed(1)
|
ds.config.set_seed(1)
|
||||||
datas_all = []
|
datas_all = []
|
||||||
datas_all_samples = []
|
datas_all_samples = []
|
||||||
|
@ -2425,7 +2567,14 @@ def test_distributed_shuffle_with_global_infile_files(create_multi_mindrecord_fi
|
||||||
shard_count += 1
|
shard_count += 1
|
||||||
assert origin_index != current_index
|
assert origin_index != current_index
|
||||||
|
|
||||||
|
|
||||||
def test_distributed_shuffle_with_multi_epochs(create_multi_mindrecord_files):
|
def test_distributed_shuffle_with_multi_epochs(create_multi_mindrecord_files):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test distributed MindDataset (with num_shards and shard_id)
|
||||||
|
without and with shuffle args under multiple epochs
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
ds.config.set_seed(1)
|
ds.config.set_seed(1)
|
||||||
datas_all = []
|
datas_all = []
|
||||||
datas_all_samples = []
|
datas_all_samples = []
|
||||||
|
@ -2588,8 +2737,13 @@ def test_distributed_shuffle_with_multi_epochs(create_multi_mindrecord_files):
|
||||||
assert datas_epoch2 not in (datas_epoch1, datas_epoch3)
|
assert datas_epoch2 not in (datas_epoch1, datas_epoch3)
|
||||||
assert datas_epoch3 not in (datas_epoch2, datas_epoch1)
|
assert datas_epoch3 not in (datas_epoch2, datas_epoch1)
|
||||||
|
|
||||||
|
|
||||||
def test_field_is_null_numpy():
|
def test_field_is_null_numpy():
|
||||||
"""add/remove nlp file"""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset when field array_d is null
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
paths = ["{}{}".format(file_name, str(x).rjust(1, '0'))
|
paths = ["{}{}".format(file_name, str(x).rjust(1, '0'))
|
||||||
for x in range(FILES_NUM)]
|
for x in range(FILES_NUM)]
|
||||||
|
@ -2655,8 +2809,13 @@ def test_field_is_null_numpy():
|
||||||
os.remove("{}".format(x))
|
os.remove("{}".format(x))
|
||||||
os.remove("{}.db".format(x))
|
os.remove("{}.db".format(x))
|
||||||
|
|
||||||
|
|
||||||
def test_for_loop_dataset_iterator(add_and_remove_nlp_compress_file):
|
def test_for_loop_dataset_iterator(add_and_remove_nlp_compress_file):
|
||||||
"""test for loop dataset iterator"""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test for loop for iterator based on MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = []
|
data = []
|
||||||
for row_id in range(16):
|
for row_id in range(16):
|
||||||
data.append({
|
data.append({
|
||||||
|
|
|
@ -74,7 +74,11 @@ def create_diff_page_size_cv_mindrecord(file_name, files_num):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_lack_json():
|
def test_cv_lack_json():
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset using json file that does not exist
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
|
@ -87,7 +91,11 @@ def test_cv_lack_json():
|
||||||
|
|
||||||
|
|
||||||
def test_cv_lack_mindrecord():
|
def test_cv_lack_mindrecord():
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset using mindrecord that does not exist or no permission
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
with pytest.raises(Exception, match="does not exist or permission denied"):
|
with pytest.raises(Exception, match="does not exist or permission denied"):
|
||||||
|
@ -95,6 +103,11 @@ def test_cv_lack_mindrecord():
|
||||||
|
|
||||||
|
|
||||||
def test_invalid_mindrecord():
|
def test_invalid_mindrecord():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset using invalid file (size of mindrecord file header is larger than the upper limit)
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
with open(file_name, 'w') as f:
|
with open(file_name, 'w') as f:
|
||||||
f.write('just for test')
|
f.write('just for test')
|
||||||
|
@ -109,6 +122,11 @@ def test_invalid_mindrecord():
|
||||||
|
|
||||||
|
|
||||||
def test_minddataset_lack_db():
|
def test_minddataset_lack_db():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset without .db files
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
os.remove("{}.db".format(file_name))
|
os.remove("{}.db".format(file_name))
|
||||||
|
@ -140,6 +158,11 @@ def test_cv_minddataset_pk_sample_error_class_column():
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_exclusive_shuffle():
|
def test_cv_minddataset_pk_sample_exclusive_shuffle():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset by specifying sampler and shuffle at the same time
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
|
@ -156,6 +179,11 @@ def test_cv_minddataset_pk_sample_exclusive_shuffle():
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_different_schema():
|
def test_cv_minddataset_reader_different_schema():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset by including a file that has a different schema from the others
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
file_name_1 = file_name + '_1'
|
file_name_1 = file_name + '_1'
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
|
@ -177,6 +205,11 @@ def test_cv_minddataset_reader_different_schema():
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_different_page_size():
|
def test_cv_minddataset_reader_different_page_size():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset where one of the files has a different page size
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
file_name_1 = file_name + '_1'
|
file_name_1 = file_name + '_1'
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
|
@ -199,6 +232,11 @@ def test_cv_minddataset_reader_different_page_size():
|
||||||
|
|
||||||
|
|
||||||
def test_minddataset_invalidate_num_shards():
|
def test_minddataset_invalidate_num_shards():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset where num_shards is invalid
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
columns_list = ["data", "label"]
|
columns_list = ["data", "label"]
|
||||||
|
@ -222,6 +260,11 @@ def test_minddataset_invalidate_num_shards():
|
||||||
|
|
||||||
|
|
||||||
def test_minddataset_invalidate_shard_id():
|
def test_minddataset_invalidate_shard_id():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset where shard_id is invalid
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
columns_list = ["data", "label"]
|
columns_list = ["data", "label"]
|
||||||
|
@ -245,6 +288,11 @@ def test_minddataset_invalidate_shard_id():
|
||||||
|
|
||||||
|
|
||||||
def test_minddataset_shard_id_bigger_than_num_shard():
|
def test_minddataset_shard_id_bigger_than_num_shard():
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset where shard_id is bigger than num_shards
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
columns_list = ["data", "label"]
|
columns_list = ["data", "label"]
|
||||||
|
@ -282,7 +330,11 @@ def test_minddataset_shard_id_bigger_than_num_shard():
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_num_samples_equals_0():
|
def test_cv_minddataset_partition_num_samples_equals_0():
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset where num_samples is invalid
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
create_cv_mindrecord(file_name, 1)
|
create_cv_mindrecord(file_name, 1)
|
||||||
columns_list = ["data", "label"]
|
columns_list = ["data", "label"]
|
||||||
|
@ -312,8 +364,11 @@ def test_cv_minddataset_partition_num_samples_equals_0():
|
||||||
|
|
||||||
|
|
||||||
def test_mindrecord_exception():
|
def test_mindrecord_exception():
|
||||||
"""tutorial for exception scenario of minderdataset + map would print error info."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test MindDataset by mapping function that will raise Exception and print error info
|
||||||
|
Expectation: Exception is raised as expected
|
||||||
|
"""
|
||||||
def exception_func(item):
|
def exception_func(item):
|
||||||
raise Exception("Error occur!")
|
raise Exception("Error occur!")
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -107,7 +107,11 @@ def add_and_remove_nlp_file():
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_reader_basic_padded_samples(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_basic_padded_samples(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read on MindDataset with padded_sample
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["label", "file_name", "data"]
|
columns_list = ["label", "file_name", "data"]
|
||||||
|
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
|
@ -135,7 +139,11 @@ def test_cv_minddataset_reader_basic_padded_samples(add_and_remove_cv_file):
|
||||||
assert num_iter == 15
|
assert num_iter == 15
|
||||||
|
|
||||||
def test_cv_minddataset_reader_basic_padded_samples_type_cast(add_and_remove_cv_file):
|
def test_cv_minddataset_reader_basic_padded_samples_type_cast(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read on MindDataset with padded_sample which file_name requires type cast
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["label", "file_name", "data"]
|
columns_list = ["label", "file_name", "data"]
|
||||||
|
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
|
@ -164,7 +172,11 @@ def test_cv_minddataset_reader_basic_padded_samples_type_cast(add_and_remove_cv_
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_padded_samples(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_padded_samples(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset with padded_sample and partition (num_shards and shard_id)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
|
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
|
@ -205,7 +217,12 @@ def test_cv_minddataset_partition_padded_samples(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_padded_samples_multi_epoch(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_padded_samples_multi_epoch(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset with padded_sample and partition (num_shards and shard_id),
|
||||||
|
performed under multiple epochs
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
|
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
|
@ -278,7 +295,12 @@ def test_cv_minddataset_partition_padded_samples_multi_epoch(add_and_remove_cv_f
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_padded_samples_no_dividsible(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_padded_samples_no_dividsible(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minddataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read on MindDataset with padded_sample and partition (num_shards and shard_id),
|
||||||
|
where num_padded is not divisible
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
|
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
|
@ -305,6 +327,12 @@ def test_cv_minddataset_partition_padded_samples_no_dividsible(add_and_remove_cv
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_padded_samples_dataset_size_no_divisible(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_padded_samples_dataset_size_no_divisible(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test get_dataset_size during MindDataset read with padded_sample and partition
|
||||||
|
(num_shards and shard_id), where num_padded is not divisible
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
|
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
|
@ -328,6 +356,12 @@ def test_cv_minddataset_partition_padded_samples_dataset_size_no_divisible(add_a
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_padded_samples_no_equal_column_list(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_padded_samples_no_equal_column_list(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with padded_sample and partition
|
||||||
|
(num_shards and shard_id), where padded_sample does not match columns_list
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
|
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
|
@ -355,6 +389,12 @@ def test_cv_minddataset_partition_padded_samples_no_equal_column_list(add_and_re
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_padded_samples_no_column_list(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_padded_samples_no_column_list(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with padded_sample and partition
|
||||||
|
(num_shards and shard_id), where there is no columns_list
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
padded_sample = data[0]
|
padded_sample = data[0]
|
||||||
padded_sample['label'] = -2
|
padded_sample['label'] = -2
|
||||||
|
@ -380,6 +420,12 @@ def test_cv_minddataset_partition_padded_samples_no_column_list(add_and_remove_c
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_padded_samples_no_num_padded(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_padded_samples_no_num_padded(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with padded_sample and partition
|
||||||
|
(num_shards and shard_id), where there is no num_padded
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
padded_sample = data[0]
|
padded_sample = data[0]
|
||||||
|
@ -404,6 +450,12 @@ def test_cv_minddataset_partition_padded_samples_no_num_padded(add_and_remove_cv
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_partition_padded_samples_no_padded_samples(add_and_remove_cv_file):
|
def test_cv_minddataset_partition_padded_samples_no_padded_samples(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with padded_sample and partition
|
||||||
|
(num_shards and shard_id), where there is no padded_sample
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
data = get_data(CV_DIR_NAME)
|
data = get_data(CV_DIR_NAME)
|
||||||
padded_sample = data[0]
|
padded_sample = data[0]
|
||||||
|
@ -428,6 +480,11 @@ def test_cv_minddataset_partition_padded_samples_no_padded_samples(add_and_remov
|
||||||
|
|
||||||
|
|
||||||
def test_nlp_minddataset_reader_basic_padded_samples(add_and_remove_nlp_file):
|
def test_nlp_minddataset_reader_basic_padded_samples(add_and_remove_nlp_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read MindDataset with padded_sample from raw data of aclImdb dataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["input_ids", "id", "rating"]
|
columns_list = ["input_ids", "id", "rating"]
|
||||||
|
|
||||||
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
|
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
|
||||||
|
@ -469,6 +526,11 @@ def test_nlp_minddataset_reader_basic_padded_samples(add_and_remove_nlp_file):
|
||||||
|
|
||||||
|
|
||||||
def test_nlp_minddataset_reader_basic_padded_samples_multi_epoch(add_and_remove_nlp_file):
|
def test_nlp_minddataset_reader_basic_padded_samples_multi_epoch(add_and_remove_nlp_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read MindDataset with padded_sample from raw data of aclImdb dataset under multiple epochs
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["input_ids", "id", "rating"]
|
columns_list = ["input_ids", "id", "rating"]
|
||||||
|
|
||||||
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
|
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
|
||||||
|
@ -535,6 +597,12 @@ def test_nlp_minddataset_reader_basic_padded_samples_multi_epoch(add_and_remove_
|
||||||
|
|
||||||
|
|
||||||
def test_nlp_minddataset_reader_basic_padded_samples_check_whole_reshuffle_result_per_epoch(add_and_remove_nlp_file):
|
def test_nlp_minddataset_reader_basic_padded_samples_check_whole_reshuffle_result_per_epoch(add_and_remove_nlp_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read MindDataset with padded_sample from raw data of aclImdb dataset
|
||||||
|
by checking whole result_per_epoch to ensure there is no reshuffling
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["input_ids", "id", "rating"]
|
columns_list = ["input_ids", "id", "rating"]
|
||||||
|
|
||||||
padded_sample = {}
|
padded_sample = {}
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
# Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -62,7 +62,11 @@ def add_and_remove_cv_file():
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file):
|
def test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with PKSampler without any columns_list in the dataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
sampler = ds.PKSampler(2)
|
sampler = ds.PKSampler(2)
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -82,7 +86,11 @@ def test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file):
|
def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read MindDataset with PKSampler
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
sampler = ds.PKSampler(2)
|
sampler = ds.PKSampler(2)
|
||||||
|
@ -105,7 +113,11 @@ def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file):
|
def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with PKSampler with shuffle=True
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
sampler = ds.PKSampler(3, None, True)
|
sampler = ds.PKSampler(3, None, True)
|
||||||
|
@ -127,7 +139,12 @@ def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_shuffle_1(add_and_remove_cv_file):
|
def test_cv_minddataset_pk_sample_shuffle_1(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with PKSampler with shuffle=True and
|
||||||
|
with num_samples larger than get_dataset_size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
sampler = ds.PKSampler(3, None, True, 'label', 5)
|
sampler = ds.PKSampler(3, None, True, 'label', 5)
|
||||||
|
@ -149,7 +166,12 @@ def test_cv_minddataset_pk_sample_shuffle_1(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_shuffle_2(add_and_remove_cv_file):
|
def test_cv_minddataset_pk_sample_shuffle_2(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with PKSampler with shuffle=True and
|
||||||
|
with num_samples larger than get_dataset_size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
sampler = ds.PKSampler(3, None, True, 'label', 10)
|
sampler = ds.PKSampler(3, None, True, 'label', 10)
|
||||||
|
@ -171,7 +193,11 @@ def test_cv_minddataset_pk_sample_shuffle_2(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_out_of_range_0(add_and_remove_cv_file):
|
def test_cv_minddataset_pk_sample_out_of_range_0(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with PKSampler with shuffle=True and num_val that is out of range
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
sampler = ds.PKSampler(5, None, True)
|
sampler = ds.PKSampler(5, None, True)
|
||||||
|
@ -192,7 +218,12 @@ def test_cv_minddataset_pk_sample_out_of_range_0(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_out_of_range_1(add_and_remove_cv_file):
|
def test_cv_minddataset_pk_sample_out_of_range_1(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with PKSampler with shuffle=True, num_val that is out of range, and
|
||||||
|
num_samples larger than get_dataset_size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
sampler = ds.PKSampler(5, None, True, 'label', 20)
|
sampler = ds.PKSampler(5, None, True, 'label', 20)
|
||||||
|
@ -213,7 +244,12 @@ def test_cv_minddataset_pk_sample_out_of_range_1(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_pk_sample_out_of_range_2(add_and_remove_cv_file):
|
def test_cv_minddataset_pk_sample_out_of_range_2(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with PKSampler with shuffle=True, num_val that is out of range, and
|
||||||
|
num_samples that is equal to get_dataset_size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
sampler = ds.PKSampler(5, None, True, 'label', 10)
|
sampler = ds.PKSampler(5, None, True, 'label', 10)
|
||||||
|
@ -234,7 +270,11 @@ def test_cv_minddataset_pk_sample_out_of_range_2(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
|
def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read MindDataset with SubsetRandomSampler
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -259,7 +299,11 @@ def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
|
def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with SubsetRandomSampler with duplicate index in the indices
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
indices = [1, 2, 2, 5, 7, 9]
|
indices = [1, 2, 2, 5, 7, 9]
|
||||||
|
@ -284,7 +328,11 @@ def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
|
def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with SubsetRandomSampler with empty indices
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
indices = []
|
indices = []
|
||||||
|
@ -309,7 +357,11 @@ def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file):
|
def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file):
|
||||||
"""tutorial for cv minderdataset."""
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with SubsetRandomSampler with indices that are out of range
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
indices = [1, 2, 4, 11, 13]
|
indices = [1, 2, 4, 11, 13]
|
||||||
|
@ -334,6 +386,11 @@ def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
|
def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with SubsetRandomSampler with negative indices
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
indices = [1, 2, 4, -1, -2]
|
indices = [1, 2, 4, -1, -2]
|
||||||
|
@ -358,6 +415,11 @@ def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file):
|
def test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read MindDataset with RandomSampler
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME, True)
|
data = get_data(CV_DIR_NAME, True)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
@ -384,6 +446,11 @@ def test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file):
|
def test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with RandomSampler followed by Repeat op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -419,6 +486,11 @@ def test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file):
|
def test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with RandomSampler with replacement=True
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -441,6 +513,11 @@ def test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_random_sampler_replacement_false_1(add_and_remove_cv_file):
|
def test_cv_minddataset_random_sampler_replacement_false_1(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with RandomSampler with replacement=False and num_samples <= dataset size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -463,6 +540,11 @@ def test_cv_minddataset_random_sampler_replacement_false_1(add_and_remove_cv_fil
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_random_sampler_replacement_false_2(add_and_remove_cv_file):
|
def test_cv_minddataset_random_sampler_replacement_false_2(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with RandomSampler with replacement=False and num_samples > dataset size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -485,6 +567,11 @@ def test_cv_minddataset_random_sampler_replacement_false_2(add_and_remove_cv_fil
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
|
def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read MindDataset with SequentialSampler
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME, True)
|
data = get_data(CV_DIR_NAME, True)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
@ -510,6 +597,11 @@ def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_sequential_sampler_offeset(add_and_remove_cv_file):
|
def test_cv_minddataset_sequential_sampler_offeset(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with SequentialSampler with offset on starting index
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME, True)
|
data = get_data(CV_DIR_NAME, True)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
@ -536,6 +628,12 @@ def test_cv_minddataset_sequential_sampler_offeset(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
|
def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with SequentialSampler with offset on starting index and
|
||||||
|
num_samples > dataset size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME, True)
|
data = get_data(CV_DIR_NAME, True)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
@ -562,6 +660,11 @@ def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_split_basic(add_and_remove_cv_file):
|
def test_cv_minddataset_split_basic(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test basic read MindDataset after Split op is applied
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME, True)
|
data = get_data(CV_DIR_NAME, True)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
@ -599,6 +702,11 @@ def test_cv_minddataset_split_basic(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_split_exact_percent(add_and_remove_cv_file):
|
def test_cv_minddataset_split_exact_percent(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset after Split op is applied using exact percentages
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME, True)
|
data = get_data(CV_DIR_NAME, True)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
@ -636,6 +744,11 @@ def test_cv_minddataset_split_exact_percent(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file):
|
def test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset after Split op is applied using fuzzy percentages
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME, True)
|
data = get_data(CV_DIR_NAME, True)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
@ -673,6 +786,11 @@ def test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_split_deterministic(add_and_remove_cv_file):
|
def test_cv_minddataset_split_deterministic(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset after deterministic Split op is applied
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||||
|
@ -714,6 +832,11 @@ def test_cv_minddataset_split_deterministic(add_and_remove_cv_file):
|
||||||
|
|
||||||
|
|
||||||
def test_cv_minddataset_split_sharding(add_and_remove_cv_file):
|
def test_cv_minddataset_split_sharding(add_and_remove_cv_file):
|
||||||
|
"""
|
||||||
|
Feature: MindDataset
|
||||||
|
Description: Test read MindDataset with DistributedSampler after deterministic Split op is applied
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = get_data(CV_DIR_NAME, True)
|
data = get_data(CV_DIR_NAME, True)
|
||||||
columns_list = ["data", "file_name", "label"]
|
columns_list = ["data", "file_name", "label"]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
# Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -26,6 +26,11 @@ MP_FILE = "../data/dataset/jiebadict/jieba.dict.utf8"
|
||||||
|
|
||||||
|
|
||||||
def test_on_tokenized_line():
|
def test_on_tokenized_line():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test Lookup op on tokenized line using JiebaTokenizer with special_tokens
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = ds.TextFileDataset("../data/dataset/testVocab/lines.txt", shuffle=False)
|
data = ds.TextFileDataset("../data/dataset/testVocab/lines.txt", shuffle=False)
|
||||||
jieba_op = text.JiebaTokenizer(HMM_FILE, MP_FILE, mode=text.JiebaMode.MP)
|
jieba_op = text.JiebaTokenizer(HMM_FILE, MP_FILE, mode=text.JiebaMode.MP)
|
||||||
with open(VOCAB_FILE, 'r') as f:
|
with open(VOCAB_FILE, 'r') as f:
|
||||||
|
@ -43,6 +48,11 @@ def test_on_tokenized_line():
|
||||||
|
|
||||||
|
|
||||||
def test_on_tokenized_line_with_no_special_tokens():
|
def test_on_tokenized_line_with_no_special_tokens():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test Lookup op on tokenized line using JiebaTokenizer without special_tokens
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = ds.TextFileDataset("../data/dataset/testVocab/lines.txt", shuffle=False)
|
data = ds.TextFileDataset("../data/dataset/testVocab/lines.txt", shuffle=False)
|
||||||
jieba_op = text.JiebaTokenizer(HMM_FILE, MP_FILE, mode=text.JiebaMode.MP)
|
jieba_op = text.JiebaTokenizer(HMM_FILE, MP_FILE, mode=text.JiebaMode.MP)
|
||||||
with open(VOCAB_FILE, 'r') as f:
|
with open(VOCAB_FILE, 'r') as f:
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -22,6 +22,11 @@ from mindspore import context
|
||||||
DATA_DIR = "../data/dataset/testVOC2012"
|
DATA_DIR = "../data/dataset/testVOC2012"
|
||||||
|
|
||||||
def test_noop_pserver():
|
def test_noop_pserver():
|
||||||
|
"""
|
||||||
|
Feature: No-op mode
|
||||||
|
Description: Test No-op mode support where the MS_ROLE environment is MS_PSERVER
|
||||||
|
Expectation: Runs successfully
|
||||||
|
"""
|
||||||
os.environ['MS_ROLE'] = 'MS_PSERVER'
|
os.environ['MS_ROLE'] = 'MS_PSERVER'
|
||||||
context.set_ps_context(enable_ps=True)
|
context.set_ps_context(enable_ps=True)
|
||||||
data1 = ds.VOCDataset(DATA_DIR, task="Segmentation", usage="train", shuffle=False, decode=True)
|
data1 = ds.VOCDataset(DATA_DIR, task="Segmentation", usage="train", shuffle=False, decode=True)
|
||||||
|
@ -34,6 +39,11 @@ def test_noop_pserver():
|
||||||
|
|
||||||
|
|
||||||
def test_noop_sched():
|
def test_noop_sched():
|
||||||
|
"""
|
||||||
|
Feature: No-op mode
|
||||||
|
Description: Test No-op mode support where the MS_ROLE environment is MS_SCHED
|
||||||
|
Expectation: Runs successfully
|
||||||
|
"""
|
||||||
os.environ['MS_ROLE'] = 'MS_SCHED'
|
os.environ['MS_ROLE'] = 'MS_SCHED'
|
||||||
context.set_ps_context(enable_ps=True)
|
context.set_ps_context(enable_ps=True)
|
||||||
data1 = ds.VOCDataset(DATA_DIR, task="Segmentation", usage="train", shuffle=False, decode=True)
|
data1 = ds.VOCDataset(DATA_DIR, task="Segmentation", usage="train", shuffle=False, decode=True)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -21,6 +21,11 @@ import mindspore.dataset as ds
|
||||||
# map dataset with columns order arguments should produce a ProjectOp over MapOp
|
# map dataset with columns order arguments should produce a ProjectOp over MapOp
|
||||||
# This test does not utilize the compiling passes at this time.
|
# This test does not utilize the compiling passes at this time.
|
||||||
def test_map_reorder0():
|
def test_map_reorder0():
|
||||||
|
"""
|
||||||
|
Feature: Map op
|
||||||
|
Description: Test Map op by applying operation lambda x: x on GeneratorDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def generator_mc(maxid=1):
|
def generator_mc(maxid=1):
|
||||||
for _ in range(maxid):
|
for _ in range(maxid):
|
||||||
yield (np.array([0]), np.array([1]))
|
yield (np.array([0]), np.array([1]))
|
||||||
|
@ -39,6 +44,11 @@ def test_map_reorder0():
|
||||||
# map dataset with columns order arguments should produce a ProjectOp over MapOp
|
# map dataset with columns order arguments should produce a ProjectOp over MapOp
|
||||||
# This test does not utilize the compiling passes at this time.
|
# This test does not utilize the compiling passes at this time.
|
||||||
def test_map_reorder1():
|
def test_map_reorder1():
|
||||||
|
"""
|
||||||
|
Feature: Map op
|
||||||
|
Description: Test Map op on 2 mapped GeneratorDatasets that are zipped
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def generator_mc(maxid=1):
|
def generator_mc(maxid=1):
|
||||||
for _ in range(maxid):
|
for _ in range(maxid):
|
||||||
yield (np.array([0]), np.array([1]), np.array([2]))
|
yield (np.array([0]), np.array([1]), np.array([2]))
|
||||||
|
@ -59,6 +69,11 @@ def test_map_reorder1():
|
||||||
# TFRecordDataset with global shuffle should produce a ShuffleOp over TfReaderOp.
|
# TFRecordDataset with global shuffle should produce a ShuffleOp over TfReaderOp.
|
||||||
# This test does not utilize the compiling passes at this time.
|
# This test does not utilize the compiling passes at this time.
|
||||||
def test_shuffle():
|
def test_shuffle():
|
||||||
|
"""
|
||||||
|
Feature: Shuffle op
|
||||||
|
Description: Test one dataset with Shuffle.GLOBAL with another dataset with Shuffle.FILES followed by shuffle op
|
||||||
|
Expectation: Both datasets should be equal
|
||||||
|
"""
|
||||||
FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
|
FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
|
||||||
SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
||||||
|
|
||||||
|
@ -98,4 +113,4 @@ def test_shuffle():
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test_map_reorder0()
|
test_map_reorder0()
|
||||||
test_map_reorder1()
|
test_map_reorder1()
|
||||||
test_global_shuffle()
|
test_shuffle()
|
||||||
|
|
|
@ -60,6 +60,11 @@ def gen_var_cols_2d(num):
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_01():
|
def test_batch_padding_01():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding where input_shape=[x] and output_shape=[y] in which y > x
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
|
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
|
||||||
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([2, 2], -2), "col1d": ([2], -1)})
|
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([2, 2], -2), "col1d": ([2], -1)})
|
||||||
data1 = data1.repeat(2)
|
data1 = data1.repeat(2)
|
||||||
|
@ -69,6 +74,12 @@ def test_batch_padding_01():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_02():
|
def test_batch_padding_02():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding where padding in one dimension and truncate in the other, in which
|
||||||
|
input_shape=[x1,x2] and output_shape=[y1,y2] and y1 > x1 and y2 < x2
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
|
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
|
||||||
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([1, 2], -2)})
|
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([1, 2], -2)})
|
||||||
data1 = data1.repeat(2)
|
data1 = data1.repeat(2)
|
||||||
|
@ -78,6 +89,11 @@ def test_batch_padding_02():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_03():
|
def test_batch_padding_03():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding using automatic padding for a specific column
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_var_col(4)), ["col"])
|
data1 = ds.GeneratorDataset((lambda: gen_var_col(4)), ["col"])
|
||||||
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col": (None, -1)}) # pad automatically
|
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col": (None, -1)}) # pad automatically
|
||||||
data1 = data1.repeat(2)
|
data1 = data1.repeat(2)
|
||||||
|
@ -91,6 +107,11 @@ def test_batch_padding_03():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_04():
|
def test_batch_padding_04():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding using default setting for all columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_var_cols(2)), ["col1", "col2"])
|
data1 = ds.GeneratorDataset((lambda: gen_var_cols(2)), ["col1", "col2"])
|
||||||
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={}) # pad automatically
|
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={}) # pad automatically
|
||||||
data1 = data1.repeat(2)
|
data1 = data1.repeat(2)
|
||||||
|
@ -100,6 +121,11 @@ def test_batch_padding_04():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_05():
|
def test_batch_padding_05():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding where None is in different places
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_var_cols_2d(3)), ["col1", "col2"])
|
data1 = ds.GeneratorDataset((lambda: gen_var_cols_2d(3)), ["col1", "col2"])
|
||||||
data1 = data1.batch(batch_size=3, drop_remainder=False,
|
data1 = data1.batch(batch_size=3, drop_remainder=False,
|
||||||
pad_info={"col2": ([2, None], -2), "col1": (None, -1)}) # pad automatically
|
pad_info={"col2": ([2, None], -2), "col1": (None, -1)}) # pad automatically
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -35,6 +35,11 @@ def pad_compare(array, pad_shape, pad_value, res):
|
||||||
|
|
||||||
|
|
||||||
def test_pad_end_basics():
|
def test_pad_end_basics():
|
||||||
|
"""
|
||||||
|
Feature: PadEnd op
|
||||||
|
Description: Test PadEnd op basic usage with array of ints
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
pad_compare([1, 2], [3], -1, [1, 2, -1])
|
pad_compare([1, 2], [3], -1, [1, 2, -1])
|
||||||
pad_compare([1, 2, 3], [3], -1, [1, 2, 3])
|
pad_compare([1, 2, 3], [3], -1, [1, 2, 3])
|
||||||
pad_compare([1, 2, 3], [2], -1, [1, 2])
|
pad_compare([1, 2, 3], [2], -1, [1, 2])
|
||||||
|
@ -42,6 +47,11 @@ def test_pad_end_basics():
|
||||||
|
|
||||||
|
|
||||||
def test_pad_end_str():
|
def test_pad_end_str():
|
||||||
|
"""
|
||||||
|
Feature: PadEnd op
|
||||||
|
Description: Test PadEnd op basic usage with array of strings
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
pad_compare([b"1", b"2"], [3], b"-1", [b"1", b"2", b"-1"])
|
pad_compare([b"1", b"2"], [3], b"-1", [b"1", b"2", b"-1"])
|
||||||
pad_compare([b"1", b"2", b"3"], [3], b"-1", [b"1", b"2", b"3"])
|
pad_compare([b"1", b"2", b"3"], [3], b"-1", [b"1", b"2", b"3"])
|
||||||
pad_compare([b"1", b"2", b"3"], [2], b"-1", [b"1", b"2"])
|
pad_compare([b"1", b"2", b"3"], [2], b"-1", [b"1", b"2"])
|
||||||
|
@ -49,6 +59,11 @@ def test_pad_end_str():
|
||||||
|
|
||||||
|
|
||||||
def test_pad_end_exceptions():
|
def test_pad_end_exceptions():
|
||||||
|
"""
|
||||||
|
Feature: PadEnd op
|
||||||
|
Description: Test PadEnd op with invalid inputs
|
||||||
|
Expectation: Correct error is raised as expected
|
||||||
|
"""
|
||||||
with pytest.raises(RuntimeError) as info:
|
with pytest.raises(RuntimeError) as info:
|
||||||
pad_compare([1, 2], [3], "-1", [])
|
pad_compare([1, 2], [3], "-1", [])
|
||||||
assert "pad_value and item of dataset are not of the same type" in str(info.value)
|
assert "pad_value and item of dataset are not of the same type" in str(info.value)
|
||||||
|
|
|
@ -1,3 +1,18 @@
|
||||||
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
import copy
|
import copy
|
||||||
import os
|
import os
|
||||||
|
@ -39,13 +54,18 @@ def generator_30():
|
||||||
|
|
||||||
|
|
||||||
def test_TFRecord_Padded():
|
def test_TFRecord_Padded():
|
||||||
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
"""
|
||||||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding PaddedDataset on TFRecordDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
|
data_dir = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||||
|
schema_dir = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||||
result_list = [[159109, 2], [192607, 3], [179251, 4], [1, 5]]
|
result_list = [[159109, 2], [192607, 3], [179251, 4], [1, 5]]
|
||||||
verify_list = []
|
verify_list = []
|
||||||
shard_num = 4
|
shard_num = 4
|
||||||
for i in range(shard_num):
|
for i in range(shard_num):
|
||||||
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"],
|
data = ds.TFRecordDataset(data_dir, schema_dir, columns_list=["image"],
|
||||||
shuffle=False, shard_equal_rows=True)
|
shuffle=False, shard_equal_rows=True)
|
||||||
|
|
||||||
padded_samples = [{'image': np.zeros(1, np.uint8)}, {'image': np.zeros(2, np.uint8)},
|
padded_samples = [{'image': np.zeros(1, np.uint8)}, {'image': np.zeros(2, np.uint8)},
|
||||||
|
@ -64,6 +84,11 @@ def test_TFRecord_Padded():
|
||||||
|
|
||||||
|
|
||||||
def test_GeneratorDataSet_Padded():
|
def test_GeneratorDataSet_Padded():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding GeneratorDataset with another GeneratorDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
result_list = []
|
result_list = []
|
||||||
for i in range(10):
|
for i in range(10):
|
||||||
tem_list = []
|
tem_list = []
|
||||||
|
@ -88,6 +113,11 @@ def test_GeneratorDataSet_Padded():
|
||||||
|
|
||||||
|
|
||||||
def test_Reapeat_afterPadded():
|
def test_Reapeat_afterPadded():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding PaddedDataset with another PaddedDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
result_list = [1, 3, 5, 7]
|
result_list = [1, 3, 5, 7]
|
||||||
verify_list = []
|
verify_list = []
|
||||||
|
|
||||||
|
@ -112,6 +142,11 @@ def test_Reapeat_afterPadded():
|
||||||
|
|
||||||
|
|
||||||
def test_bath_afterPadded():
|
def test_bath_afterPadded():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding PaddedDataset with another PaddedDataset followed by batch op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = [{'image': np.zeros(1, np.uint8)}, {'image': np.zeros(1, np.uint8)},
|
data1 = [{'image': np.zeros(1, np.uint8)}, {'image': np.zeros(1, np.uint8)},
|
||||||
{'image': np.zeros(1, np.uint8)}, {'image': np.zeros(1, np.uint8)},
|
{'image': np.zeros(1, np.uint8)}, {'image': np.zeros(1, np.uint8)},
|
||||||
{'image': np.zeros(1, np.uint8)}]
|
{'image': np.zeros(1, np.uint8)}]
|
||||||
|
@ -130,6 +165,11 @@ def test_bath_afterPadded():
|
||||||
|
|
||||||
|
|
||||||
def test_Unevenly_distributed():
|
def test_Unevenly_distributed():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding PaddedDataset with another PaddedDataset that is unevenly distributed
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
result_list = [[1, 4, 7], [2, 5, 8], [3, 6]]
|
result_list = [[1, 4, 7], [2, 5, 8], [3, 6]]
|
||||||
verify_list = []
|
verify_list = []
|
||||||
|
|
||||||
|
@ -156,6 +196,11 @@ def test_Unevenly_distributed():
|
||||||
|
|
||||||
|
|
||||||
def test_three_datasets_connected():
|
def test_three_datasets_connected():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding 3 connected GeneratorDatasets
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
result_list = []
|
result_list = []
|
||||||
for i in range(10):
|
for i in range(10):
|
||||||
tem_list = []
|
tem_list = []
|
||||||
|
@ -182,6 +227,11 @@ def test_three_datasets_connected():
|
||||||
|
|
||||||
|
|
||||||
def test_raise_error():
|
def test_raise_error():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding a PaddedDataset after a batch op with a PaddedDataset, then apply sampler op
|
||||||
|
Expectation: Correct error is raised as expected
|
||||||
|
"""
|
||||||
data1 = [{'image': np.zeros(0, np.uint8)}, {'image': np.zeros(0, np.uint8)},
|
data1 = [{'image': np.zeros(0, np.uint8)}, {'image': np.zeros(0, np.uint8)},
|
||||||
{'image': np.zeros(0, np.uint8)}, {'image': np.zeros(0, np.uint8)},
|
{'image': np.zeros(0, np.uint8)}, {'image': np.zeros(0, np.uint8)},
|
||||||
{'image': np.zeros(0, np.uint8)}]
|
{'image': np.zeros(0, np.uint8)}]
|
||||||
|
@ -214,8 +264,13 @@ def test_raise_error():
|
||||||
assert excinfo.type == 'ValueError'
|
assert excinfo.type == 'ValueError'
|
||||||
|
|
||||||
def test_imagefolder_error():
|
def test_imagefolder_error():
|
||||||
DATA_DIR = "../data/dataset/testPK/data"
|
"""
|
||||||
data = ds.ImageFolderDataset(DATA_DIR, num_samples=14)
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding an ImageFolderDataset with num_samples with PaddedDataset
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
|
data_dir = "../data/dataset/testPK/data"
|
||||||
|
data = ds.ImageFolderDataset(data_dir, num_samples=14)
|
||||||
|
|
||||||
data1 = [{'image': np.zeros(1, np.uint8), 'label': np.array(0, np.int32)},
|
data1 = [{'image': np.zeros(1, np.uint8), 'label': np.array(0, np.int32)},
|
||||||
{'image': np.zeros(2, np.uint8), 'label': np.array(1, np.int32)},
|
{'image': np.zeros(2, np.uint8), 'label': np.array(1, np.int32)},
|
||||||
|
@ -232,8 +287,13 @@ def test_imagefolder_error():
|
||||||
assert excinfo.type == 'ValueError'
|
assert excinfo.type == 'ValueError'
|
||||||
|
|
||||||
def test_imagefolder_padded():
|
def test_imagefolder_padded():
|
||||||
DATA_DIR = "../data/dataset/testPK/data"
|
"""
|
||||||
data = ds.ImageFolderDataset(DATA_DIR)
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding an ImageFolderDataset without num_samples with PaddedDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
|
data_dir = "../data/dataset/testPK/data"
|
||||||
|
data = ds.ImageFolderDataset(data_dir)
|
||||||
|
|
||||||
data1 = [{'image': np.zeros(1, np.uint8), 'label': np.array(0, np.int32)},
|
data1 = [{'image': np.zeros(1, np.uint8), 'label': np.array(0, np.int32)},
|
||||||
{'image': np.zeros(2, np.uint8), 'label': np.array(1, np.int32)},
|
{'image': np.zeros(2, np.uint8), 'label': np.array(1, np.int32)},
|
||||||
|
@ -256,11 +316,16 @@ def test_imagefolder_padded():
|
||||||
|
|
||||||
|
|
||||||
def test_imagefolder_padded_with_decode():
|
def test_imagefolder_padded_with_decode():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding an ImageFolderDataset with PaddedDataset followed by a Decode op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
num_shards = 5
|
num_shards = 5
|
||||||
count = 0
|
count = 0
|
||||||
for shard_id in range(num_shards):
|
for shard_id in range(num_shards):
|
||||||
DATA_DIR = "../data/dataset/testPK/data"
|
data_dir = "../data/dataset/testPK/data"
|
||||||
data = ds.ImageFolderDataset(DATA_DIR)
|
data = ds.ImageFolderDataset(data_dir)
|
||||||
|
|
||||||
white_io = BytesIO()
|
white_io = BytesIO()
|
||||||
Image.new('RGB', (224, 224), (255, 255, 255)).save(white_io, 'JPEG')
|
Image.new('RGB', (224, 224), (255, 255, 255)).save(white_io, 'JPEG')
|
||||||
|
@ -285,11 +350,16 @@ def test_imagefolder_padded_with_decode():
|
||||||
|
|
||||||
|
|
||||||
def test_imagefolder_padded_with_decode_and_get_dataset_size():
|
def test_imagefolder_padded_with_decode_and_get_dataset_size():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding an ImageFolderDataset with PaddedDataset followed by get_dataset_size and a Decode op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
num_shards = 5
|
num_shards = 5
|
||||||
count = 0
|
count = 0
|
||||||
for shard_id in range(num_shards):
|
for shard_id in range(num_shards):
|
||||||
DATA_DIR = "../data/dataset/testPK/data"
|
data_dir = "../data/dataset/testPK/data"
|
||||||
data = ds.ImageFolderDataset(DATA_DIR)
|
data = ds.ImageFolderDataset(data_dir)
|
||||||
|
|
||||||
white_io = BytesIO()
|
white_io = BytesIO()
|
||||||
Image.new('RGB', (224, 224), (255, 255, 255)).save(white_io, 'JPEG')
|
Image.new('RGB', (224, 224), (255, 255, 255)).save(white_io, 'JPEG')
|
||||||
|
@ -316,6 +386,12 @@ def test_imagefolder_padded_with_decode_and_get_dataset_size():
|
||||||
|
|
||||||
|
|
||||||
def test_more_shard_padded():
|
def test_more_shard_padded():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding GeneratorDataset with another GeneratorDataset and
|
||||||
|
PaddedDataset with another PaddedDataset with larger num_shards used
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
result_list = []
|
result_list = []
|
||||||
for i in range(8):
|
for i in range(8):
|
||||||
result_list.append(1)
|
result_list.append(1)
|
||||||
|
@ -429,6 +505,11 @@ def add_and_remove_cv_file():
|
||||||
|
|
||||||
|
|
||||||
def test_Mindrecord_Padded(remove_mindrecord_file):
|
def test_Mindrecord_Padded(remove_mindrecord_file):
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding an MindDataset with PaddedDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
result_list = []
|
result_list = []
|
||||||
verify_list = [[1, 2], [3, 4], [5, 11], [6, 12], [7, 13], [8, 14], [9], [10]]
|
verify_list = [[1, 2], [3, 4], [5, 11], [6, 12], [7, 13], [8, 14], [9], [10]]
|
||||||
num_readers = 4
|
num_readers = 4
|
||||||
|
@ -453,7 +534,9 @@ def test_Mindrecord_Padded(remove_mindrecord_file):
|
||||||
|
|
||||||
def test_clue_padded_and_skip_with_0_samples():
|
def test_clue_padded_and_skip_with_0_samples():
|
||||||
"""
|
"""
|
||||||
Test num_samples param of CLUE dataset
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding a CLUEDataset with PaddedDataset with and without samples
|
||||||
|
Expectation: Output is equal to the expected output except when dataset has no samples, in which error is raised
|
||||||
"""
|
"""
|
||||||
TRAIN_FILE = '../data/dataset/testCLUE/afqmc/train.json'
|
TRAIN_FILE = '../data/dataset/testCLUE/afqmc/train.json'
|
||||||
|
|
||||||
|
@ -494,6 +577,11 @@ def test_clue_padded_and_skip_with_0_samples():
|
||||||
|
|
||||||
|
|
||||||
def test_celeba_padded():
|
def test_celeba_padded():
|
||||||
|
"""
|
||||||
|
Feature: PaddedDataset
|
||||||
|
Description: Test padding an CelebADataset with PaddedDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = ds.CelebADataset("../data/dataset/testCelebAData/")
|
data = ds.CelebADataset("../data/dataset/testCelebAData/")
|
||||||
|
|
||||||
padded_samples = [{'image': np.zeros(1, np.uint8), 'attr': np.zeros(1, np.uint32)}]
|
padded_samples = [{'image': np.zeros(1, np.uint8), 'attr': np.zeros(1, np.uint32)}]
|
||||||
|
@ -517,6 +605,6 @@ if __name__ == '__main__':
|
||||||
test_Unevenly_distributed()
|
test_Unevenly_distributed()
|
||||||
test_three_datasets_connected()
|
test_three_datasets_connected()
|
||||||
test_raise_error()
|
test_raise_error()
|
||||||
test_imagefolden_padded()
|
test_imagefolder_padded()
|
||||||
test_more_shard_padded()
|
test_more_shard_padded()
|
||||||
test_Mindrecord_Padded(add_and_remove_cv_file)
|
test_Mindrecord_Padded(add_and_remove_cv_file)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -31,6 +31,11 @@ def compare(in1, in2, length, out1, out2):
|
||||||
|
|
||||||
|
|
||||||
def test_callable():
|
def test_callable():
|
||||||
|
"""
|
||||||
|
Feature: TruncateSequencePair op
|
||||||
|
Description: Test TruncateSequencePair op using an array of arrays or multiple arrays as the input
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
op = text.TruncateSequencePair(3)
|
op = text.TruncateSequencePair(3)
|
||||||
data = [["1", "2", "3"], ["4", "5"]]
|
data = [["1", "2", "3"], ["4", "5"]]
|
||||||
result_text = op(*data)
|
result_text = op(*data)
|
||||||
|
@ -42,6 +47,11 @@ def test_callable():
|
||||||
|
|
||||||
|
|
||||||
def test_basics():
|
def test_basics():
|
||||||
|
"""
|
||||||
|
Feature: TruncateSequencePair op
|
||||||
|
Description: Test TruncateSequencePair op basic usage
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
compare(in1=[1, 2, 3], in2=[4, 5], length=4, out1=[1, 2], out2=[4, 5])
|
compare(in1=[1, 2, 3], in2=[4, 5], length=4, out1=[1, 2], out2=[4, 5])
|
||||||
compare(in1=[1, 2], in2=[4, 5], length=4, out1=[1, 2], out2=[4, 5])
|
compare(in1=[1, 2], in2=[4, 5], length=4, out1=[1, 2], out2=[4, 5])
|
||||||
compare(in1=[1], in2=[4], length=4, out1=[1], out2=[4])
|
compare(in1=[1], in2=[4], length=4, out1=[1], out2=[4])
|
||||||
|
@ -50,6 +60,11 @@ def test_basics():
|
||||||
|
|
||||||
|
|
||||||
def test_basics_odd():
|
def test_basics_odd():
|
||||||
|
"""
|
||||||
|
Feature: TruncateSequencePair op
|
||||||
|
Description: Test TruncateSequencePair op basic usage when the length is an odd number > 1
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
compare(in1=[1, 2, 3], in2=[4, 5], length=3, out1=[1, 2], out2=[4])
|
compare(in1=[1, 2, 3], in2=[4, 5], length=3, out1=[1, 2], out2=[4])
|
||||||
compare(in1=[1, 2], in2=[4, 5], length=3, out1=[1, 2], out2=[4])
|
compare(in1=[1, 2], in2=[4, 5], length=3, out1=[1, 2], out2=[4])
|
||||||
compare(in1=[1], in2=[4], length=5, out1=[1], out2=[4])
|
compare(in1=[1], in2=[4], length=5, out1=[1], out2=[4])
|
||||||
|
@ -58,6 +73,11 @@ def test_basics_odd():
|
||||||
|
|
||||||
|
|
||||||
def test_basics_str():
|
def test_basics_str():
|
||||||
|
"""
|
||||||
|
Feature: TruncateSequencePair op
|
||||||
|
Description: Test TruncateSequencePair op basic usage when the inputs are array of strings
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
compare(in1=[b"1", b"2", b"3"], in2=[4, 5], length=4, out1=[b"1", b"2"], out2=[4, 5])
|
compare(in1=[b"1", b"2", b"3"], in2=[4, 5], length=4, out1=[b"1", b"2"], out2=[4, 5])
|
||||||
compare(in1=[b"1", b"2"], in2=[b"4", b"5"], length=4, out1=[b"1", b"2"], out2=[b"4", b"5"])
|
compare(in1=[b"1", b"2"], in2=[b"4", b"5"], length=4, out1=[b"1", b"2"], out2=[b"4", b"5"])
|
||||||
compare(in1=[b"1"], in2=[4], length=4, out1=[b"1"], out2=[4])
|
compare(in1=[b"1"], in2=[4], length=4, out1=[b"1"], out2=[4])
|
||||||
|
@ -66,6 +86,11 @@ def test_basics_str():
|
||||||
|
|
||||||
|
|
||||||
def test_exceptions():
|
def test_exceptions():
|
||||||
|
"""
|
||||||
|
Feature: TruncateSequencePair op
|
||||||
|
Description: Test TruncateSequencePair op with length=1
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
compare(in1=[1, 2, 3, 4], in2=[5, 6, 7, 8], length=1, out1=[1], out2=[])
|
compare(in1=[1, 2, 3, 4], in2=[5, 6, 7, 8], length=1, out1=[1], out2=[])
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -118,9 +118,10 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_simple_pipeline(self, tmp_path):
|
def test_profiling_simple_pipeline(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Generator -> Shuffle -> Batch
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling simple pipeline (Generator -> Shuffle -> Batch)
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
source = [(np.array([x]),) for x in range(1024)]
|
source = [(np.array([x]),) for x in range(1024)]
|
||||||
data1 = ds.GeneratorDataset(source, ["data"])
|
data1 = ds.GeneratorDataset(source, ["data"])
|
||||||
data1 = data1.shuffle(64)
|
data1 = data1.shuffle(64)
|
||||||
|
@ -161,11 +162,15 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_complex_pipeline(self, tmp_path):
|
def test_profiling_complex_pipeline(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling complex pipeline:
|
||||||
|
|
||||||
Generator -> Map ->
|
Generator -> Map ->
|
||||||
-> Zip
|
-> Zip
|
||||||
TFReader -> Shuffle ->
|
TFReader -> Shuffle ->
|
||||||
"""
|
|
||||||
|
|
||||||
|
Expectation: Runs successfully
|
||||||
|
"""
|
||||||
source = [(np.array([x]),) for x in range(1024)]
|
source = [(np.array([x]),) for x in range(1024)]
|
||||||
data1 = ds.GeneratorDataset(source, ["gen"])
|
data1 = ds.GeneratorDataset(source, ["gen"])
|
||||||
data1 = data1.map(operations=[(lambda x: x + 1)], input_columns=["gen"])
|
data1 = data1.map(operations=[(lambda x: x + 1)], input_columns=["gen"])
|
||||||
|
@ -207,12 +212,15 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_inline_ops_pipeline1(self, tmp_path):
|
def test_profiling_inline_ops_pipeline1(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test pipeline with inline ops: Concat and EpochCtrl
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling pipeline with inline ops (Concat and EpochCtrl):
|
||||||
|
|
||||||
Generator ->
|
Generator ->
|
||||||
Concat -> EpochCtrl
|
Concat -> EpochCtrl
|
||||||
Generator ->
|
Generator ->
|
||||||
"""
|
|
||||||
|
|
||||||
|
Expectation: Runs successfully
|
||||||
|
"""
|
||||||
# In source1 dataset: Number of rows is 3; its values are 0, 1, 2
|
# In source1 dataset: Number of rows is 3; its values are 0, 1, 2
|
||||||
def source1():
|
def source1():
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
|
@ -267,10 +275,11 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_inline_ops_pipeline2(self, tmp_path):
|
def test_profiling_inline_ops_pipeline2(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test pipeline with many inline ops
|
Feature: MindData Profiling Manager
|
||||||
Generator -> Rename -> Skip -> Repeat -> Take
|
Description: Test MindData profiling pipeline with many inline ops
|
||||||
|
(Generator -> Rename -> Skip -> Repeat -> Take)
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# In source1 dataset: Number of rows is 10; its values are 0, 1, 2, 3, 4, 5 ... 9
|
# In source1 dataset: Number of rows is 10; its values are 0, 1, 2, 3, 4, 5 ... 9
|
||||||
def source1():
|
def source1():
|
||||||
for i in range(10):
|
for i in range(10):
|
||||||
|
@ -314,7 +323,9 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_sampling_interval(self, tmp_path):
|
def test_profiling_sampling_interval(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test non-default monitor sampling interval
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test non-default monitor sampling interval
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
interval_origin = ds.config.get_monitor_sampling_interval()
|
interval_origin = ds.config.get_monitor_sampling_interval()
|
||||||
|
|
||||||
|
@ -349,10 +360,11 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_basic_pipeline(self, tmp_path):
|
def test_profiling_basic_pipeline(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test with this basic pipeline
|
Feature: MindData Profiling Manager
|
||||||
Generator -> Map -> Batch -> Repeat -> EpochCtrl
|
Description: Test MindData profiling pipeline with basic pipeline
|
||||||
|
(Generator -> Map -> Batch -> Repeat -> EpochCtrl)
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def source1():
|
def source1():
|
||||||
for i in range(8000):
|
for i in range(8000):
|
||||||
yield (np.array([i]),)
|
yield (np.array([i]),)
|
||||||
|
@ -402,10 +414,11 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_cifar10_pipeline(self, tmp_path):
|
def test_profiling_cifar10_pipeline(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test with this common pipeline with Cifar10
|
Feature: MindData Profiling Manager
|
||||||
Cifar10 -> Map -> Map -> Batch -> Repeat
|
Description: Test MindData profiling with common pipeline with Cifar10
|
||||||
|
(Cifar10 -> Map -> Map -> Batch -> Repeat)
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Create this common pipeline
|
# Create this common pipeline
|
||||||
# Cifar10 -> Map -> Map -> Batch -> Repeat
|
# Cifar10 -> Map -> Map -> Batch -> Repeat
|
||||||
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
||||||
|
@ -455,12 +468,13 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_seq_pipelines_epochctrl3(self, tmp_path):
|
def test_profiling_seq_pipelines_epochctrl3(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test with these 2 sequential pipelines:
|
Feature: MindData Profiling Manager
|
||||||
1) Generator -> Batch -> EpochCtrl
|
Description: Test MindData profiling with these 2 sequential pipelines
|
||||||
2) Generator -> Batch
|
1) Generator -> Batch -> EpochCtrl
|
||||||
Note: This is a simplification of the user scenario to use the same pipeline for training and then evaluation.
|
2) Generator -> Batch
|
||||||
|
Note: This is a simplification of the user scenario to use the same pipeline for train and then eval
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
source = [(np.array([x]),) for x in range(64)]
|
source = [(np.array([x]),) for x in range(64)]
|
||||||
data1 = ds.GeneratorDataset(source, ["data"])
|
data1 = ds.GeneratorDataset(source, ["data"])
|
||||||
data1 = data1.batch(32)
|
data1 = data1.batch(32)
|
||||||
|
@ -510,11 +524,12 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_seq_pipelines_epochctrl2(self, tmp_path):
|
def test_profiling_seq_pipelines_epochctrl2(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test with these 2 sequential pipelines:
|
Feature: MindData Profiling Manager
|
||||||
1) Generator -> Batch
|
Description: Test MindData profiling with these 2 sequential pipelines
|
||||||
2) Generator -> Batch -> EpochCtrl
|
1) Generator -> Batch
|
||||||
|
2) Generator -> Batch -> EpochCtrl
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
source = [(np.array([x]),) for x in range(64)]
|
source = [(np.array([x]),) for x in range(64)]
|
||||||
data2 = ds.GeneratorDataset(source, ["data"])
|
data2 = ds.GeneratorDataset(source, ["data"])
|
||||||
data2 = data2.batch(16)
|
data2 = data2.batch(16)
|
||||||
|
@ -564,11 +579,12 @@ class TestMinddataProfilingManager:
|
||||||
|
|
||||||
def test_profiling_seq_pipelines_repeat(self, tmp_path):
|
def test_profiling_seq_pipelines_repeat(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test with these 2 sequential pipelines:
|
Feature: MindData Profiling Manager
|
||||||
1) Generator -> Batch
|
Description: Test MindData profiling with these 2 sequential pipelines
|
||||||
2) Generator -> Batch -> Repeat
|
1) Generator -> Batch
|
||||||
|
2) Generator -> Batch -> Repeat
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
source = [(np.array([x]),) for x in range(64)]
|
source = [(np.array([x]),) for x in range(64)]
|
||||||
data2 = ds.GeneratorDataset(source, ["data"])
|
data2 = ds.GeneratorDataset(source, ["data"])
|
||||||
data2 = data2.batch(16)
|
data2 = data2.batch(16)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -95,7 +95,10 @@ class TestMindDataProfilingStartStop:
|
||||||
|
|
||||||
def test_profiling_early_stop(self, tmp_path):
|
def test_profiling_early_stop(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test MindData Profiling with Early Stop; profile for some iterations and then stop profiling
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling with early stop; profile for some iterations and then
|
||||||
|
stop profiling
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
def source1():
|
def source1():
|
||||||
for i in range(8000):
|
for i in range(8000):
|
||||||
|
@ -138,9 +141,10 @@ class TestMindDataProfilingStartStop:
|
||||||
|
|
||||||
def test_profiling_delayed_start(self, tmp_path):
|
def test_profiling_delayed_start(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test MindData Profiling with Delayed Start; profile for subset of iterations
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling with delayed start; profile for subset of iterations
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def source1():
|
def source1():
|
||||||
for i in range(8000):
|
for i in range(8000):
|
||||||
yield (np.array([i]),)
|
yield (np.array([i]),)
|
||||||
|
@ -181,9 +185,10 @@ class TestMindDataProfilingStartStop:
|
||||||
|
|
||||||
def test_profiling_multiple_start_stop(self, tmp_path):
|
def test_profiling_multiple_start_stop(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test MindData Profiling with Delayed Start and Multiple Start-Stop Sequences
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling with delayed start and multiple start-stop sequences
|
||||||
|
Expectation: Runs successfully
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def source1():
|
def source1():
|
||||||
for i in range(8000):
|
for i in range(8000):
|
||||||
yield (np.array([i]),)
|
yield (np.array([i]),)
|
||||||
|
@ -233,7 +238,9 @@ class TestMindDataProfilingStartStop:
|
||||||
|
|
||||||
def test_profiling_start_start(self):
|
def test_profiling_start_start(self):
|
||||||
"""
|
"""
|
||||||
Test MindData Profiling with Start followed by Start - user error scenario
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling with start followed by start
|
||||||
|
Expectation: Error is raised as expected
|
||||||
"""
|
"""
|
||||||
# Initialize MindData profiling manager
|
# Initialize MindData profiling manager
|
||||||
self.md_profiler.init()
|
self.md_profiler.init()
|
||||||
|
@ -252,7 +259,9 @@ class TestMindDataProfilingStartStop:
|
||||||
|
|
||||||
def test_profiling_stop_stop(self, tmp_path):
|
def test_profiling_stop_stop(self, tmp_path):
|
||||||
"""
|
"""
|
||||||
Test MindData Profiling with Stop followed by Stop - user warning scenario
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling with stop followed by stop
|
||||||
|
Expectation: Warning is produced
|
||||||
"""
|
"""
|
||||||
# Initialize MindData profiling manager
|
# Initialize MindData profiling manager
|
||||||
self.md_profiler.init()
|
self.md_profiler.init()
|
||||||
|
@ -270,7 +279,9 @@ class TestMindDataProfilingStartStop:
|
||||||
|
|
||||||
def test_profiling_stop_nostart(self):
|
def test_profiling_stop_nostart(self):
|
||||||
"""
|
"""
|
||||||
Test MindData Profiling with Stop not without prior Start - user error scenario
|
Feature: MindData Profiling Manager
|
||||||
|
Description: Test MindData profiling with stop not without prior start
|
||||||
|
Expectation: Error is raised as expected
|
||||||
"""
|
"""
|
||||||
# Initialize MindData profiling manager
|
# Initialize MindData profiling manager
|
||||||
self.md_profiler.init()
|
self.md_profiler.init()
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
# Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -26,6 +26,11 @@ GENERATE_GOLDEN = False
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_single_column():
|
def test_case_project_single_column():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op on a single column
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_sint32"]
|
columns = ["col_sint32"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -37,6 +42,11 @@ def test_case_project_single_column():
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_multiple_columns_in_order():
|
def test_case_project_multiple_columns_in_order():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op on multiple columns in order
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_sint16", "col_float", "col_2d"]
|
columns = ["col_sint16", "col_float", "col_2d"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -48,6 +58,11 @@ def test_case_project_multiple_columns_in_order():
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_multiple_columns_out_of_order():
|
def test_case_project_multiple_columns_out_of_order():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op on multiple columns out of order
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_3d", "col_sint64", "col_2d"]
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -59,6 +74,11 @@ def test_case_project_multiple_columns_out_of_order():
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_map():
|
def test_case_project_map():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op followed by a Map op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_3d", "col_sint64", "col_2d"]
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -73,6 +93,11 @@ def test_case_project_map():
|
||||||
|
|
||||||
|
|
||||||
def test_case_map_project():
|
def test_case_map_project():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op after a Map op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_3d", "col_sint64", "col_2d"]
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -88,6 +113,11 @@ def test_case_map_project():
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_between_maps():
|
def test_case_project_between_maps():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op between Map ops (Map -> Project -> Map)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_3d", "col_sint64", "col_2d"]
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -112,6 +142,11 @@ def test_case_project_between_maps():
|
||||||
|
|
||||||
|
|
||||||
def test_case_project_repeat():
|
def test_case_project_repeat():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op followed by Repeat op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_3d", "col_sint64", "col_2d"]
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -126,6 +161,11 @@ def test_case_project_repeat():
|
||||||
|
|
||||||
|
|
||||||
def test_case_repeat_project():
|
def test_case_repeat_project():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op after a Repeat op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_3d", "col_sint64", "col_2d"]
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -141,6 +181,11 @@ def test_case_repeat_project():
|
||||||
|
|
||||||
|
|
||||||
def test_case_map_project_map_project():
|
def test_case_map_project_map_project():
|
||||||
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Map -> Project -> Map -> Project
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
columns = ["col_3d", "col_sint64", "col_2d"]
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
||||||
parameters = {"params": {'columns': columns}}
|
parameters = {"params": {'columns': columns}}
|
||||||
|
|
||||||
|
@ -160,8 +205,11 @@ def test_case_map_project_map_project():
|
||||||
|
|
||||||
|
|
||||||
def test_column_order():
|
def test_column_order():
|
||||||
"""test the output dict has maintained an insertion order."""
|
"""
|
||||||
|
Feature: Project op
|
||||||
|
Description: Test Project op where the output dict should maintain the insertion order
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen_3_cols(num):
|
def gen_3_cols(num):
|
||||||
for i in range(num):
|
for i in range(num):
|
||||||
yield (np.array([i * 3]), np.array([i * 3 + 1]), np.array([i * 3 + 2]))
|
yield (np.array([i * 3]), np.array([i * 3 + 1]), np.array([i * 3 + 2]))
|
||||||
|
|
|
@ -27,7 +27,9 @@ GENERATE_GOLDEN = False
|
||||||
|
|
||||||
def test_case_0():
|
def test_case_0():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test 1-1 PyFunc : lambda x : x + x
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1-1 PyFunc : lambda x : x + x")
|
logger.info("Test 1-1 PyFunc : lambda x : x + x")
|
||||||
|
|
||||||
|
@ -46,7 +48,9 @@ def test_case_0():
|
||||||
|
|
||||||
def test_case_1():
|
def test_case_1():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test 1-n PyFunc : lambda x : (x, x + x)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1-n PyFunc : lambda x : (x , x + x) ")
|
logger.info("Test 1-n PyFunc : lambda x : (x , x + x) ")
|
||||||
|
|
||||||
|
@ -69,7 +73,9 @@ def test_case_1():
|
||||||
|
|
||||||
def test_case_2():
|
def test_case_2():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test n-1 PyFunc : lambda x, y : x + y
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test n-1 PyFunc : lambda x, y : x + y ")
|
logger.info("Test n-1 PyFunc : lambda x, y : x + y ")
|
||||||
|
|
||||||
|
@ -91,7 +97,9 @@ def test_case_2():
|
||||||
|
|
||||||
def test_case_3():
|
def test_case_3():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test n-m PyFunc : lambda x, y : (x, x + 1, x + y)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test n-m PyFunc : lambda x, y : (x , x + 1, x + y)")
|
logger.info("Test n-m PyFunc : lambda x, y : (x , x + 1, x + y)")
|
||||||
|
|
||||||
|
@ -117,7 +125,9 @@ def test_case_3():
|
||||||
|
|
||||||
def test_case_4():
|
def test_case_4():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test parallel n-m PyFunc : lambda x, y : (x, x + 1, x + y)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test Parallel n-m PyFunc : lambda x, y : (x , x + 1, x + y)")
|
logger.info("Test Parallel n-m PyFunc : lambda x, y : (x , x + 1, x + y)")
|
||||||
|
|
||||||
|
@ -149,7 +159,9 @@ def func_5(x):
|
||||||
|
|
||||||
def test_case_5():
|
def test_case_5():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test 1-1 PyFunc : lambda x : np.ones(x.shape)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1-1 PyFunc : lambda x: np.ones(x.shape)")
|
logger.info("Test 1-1 PyFunc : lambda x: np.ones(x.shape)")
|
||||||
|
|
||||||
|
@ -166,7 +178,9 @@ def test_case_5():
|
||||||
|
|
||||||
def test_case_6():
|
def test_case_6():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test PyFunc Compose : (lambda x : x + x), (lambda x : x + x)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test PyFunc Compose : (lambda x : x + x), (lambda x : x + x)")
|
logger.info("Test PyFunc Compose : (lambda x : x + x), (lambda x : x + x)")
|
||||||
|
|
||||||
|
@ -185,7 +199,9 @@ def test_case_6():
|
||||||
|
|
||||||
def test_case_7():
|
def test_case_7():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test 1-1 PyFunc with python_multiprocessing=True : lambda x : x + x
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test 1-1 PyFunc Multiprocess: lambda x : x + x")
|
logger.info("Test 1-1 PyFunc Multiprocess: lambda x : x + x")
|
||||||
|
|
||||||
|
@ -211,7 +227,9 @@ def test_case_7():
|
||||||
|
|
||||||
def test_case_8():
|
def test_case_8():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test n-m PyFunc with python_multiprocessing=True : lambda x, y : (x, x + 1, x + y)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test Multiprocess n-m PyFunc : lambda x, y : (x , x + 1, x + y)")
|
logger.info("Test Multiprocess n-m PyFunc : lambda x, y : (x , x + 1, x + y)")
|
||||||
|
|
||||||
|
@ -245,7 +263,9 @@ def test_case_8():
|
||||||
|
|
||||||
def test_case_9():
|
def test_case_9():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test multiple 1-1 PyFunc with python_multiprocessing=True : lambda x : x + x
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test multiple 1-1 PyFunc Multiprocess: lambda x : x + x")
|
logger.info("Test multiple 1-1 PyFunc Multiprocess: lambda x : x + x")
|
||||||
|
|
||||||
|
@ -271,7 +291,9 @@ def test_case_9():
|
||||||
|
|
||||||
def test_case_10():
|
def test_case_10():
|
||||||
"""
|
"""
|
||||||
Test PyFunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test multiple map with python_multiprocessing=True : lambda x : x + x
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test multiple map with multiprocess: lambda x : x + x")
|
logger.info("Test multiple map with multiprocess: lambda x : x + x")
|
||||||
|
|
||||||
|
@ -299,7 +321,9 @@ def test_case_10():
|
||||||
|
|
||||||
def test_pyfunc_implicit_compose():
|
def test_pyfunc_implicit_compose():
|
||||||
"""
|
"""
|
||||||
Test Implicit Compose with pyfunc
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test implicit compose with n-m PyFunc : lambda x, y : (x, x + 1, x + y)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("Test n-m PyFunc : lambda x, y : (x , x + 1, x + y)")
|
logger.info("Test n-m PyFunc : lambda x, y : (x , x + 1, x + y)")
|
||||||
|
|
||||||
|
@ -324,6 +348,11 @@ def test_pyfunc_implicit_compose():
|
||||||
|
|
||||||
|
|
||||||
def test_pyfunc_exception():
|
def test_pyfunc_exception():
|
||||||
|
"""
|
||||||
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test PyFunc with exception in child pyfunc process
|
||||||
|
Expectation: Exception is received and test ends gracefully
|
||||||
|
"""
|
||||||
logger.info("Test PyFunc Exception Throw: lambda x : raise Exception()")
|
logger.info("Test PyFunc Exception Throw: lambda x : raise Exception()")
|
||||||
|
|
||||||
# Sometimes there are some ITERATORS left in ITERATORS_LIST when run all UTs together,
|
# Sometimes there are some ITERATORS left in ITERATORS_LIST when run all UTs together,
|
||||||
|
@ -371,6 +400,11 @@ def test_pyfunc_exception_multiprocess():
|
||||||
|
|
||||||
|
|
||||||
def test_func_with_yield_manifest_dataset_01():
|
def test_func_with_yield_manifest_dataset_01():
|
||||||
|
"""
|
||||||
|
Feature: PyFunc in Map op
|
||||||
|
Description: Test PyFunc mapping on ManifestDataset
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
def pass_func(_):
|
def pass_func(_):
|
||||||
for i in range(10):
|
for i in range(10):
|
||||||
yield (np.array([i]),)
|
yield (np.array([i]),)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
# Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -37,6 +37,11 @@ def generate_numpy_random_rgb(shape):
|
||||||
|
|
||||||
|
|
||||||
def test_rgb_hsv_hwc():
|
def test_rgb_hsv_hwc():
|
||||||
|
"""
|
||||||
|
Feature: RgbToHsv and HsvToRgb ops
|
||||||
|
Description: Test RgbToHsv and HsvToRgb utilities with an image in HWC format
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
|
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
|
||||||
rgb_np = rgb_flat.reshape((8, 8, 3))
|
rgb_np = rgb_flat.reshape((8, 8, 3))
|
||||||
hsv_base = np.array([
|
hsv_base = np.array([
|
||||||
|
@ -62,6 +67,11 @@ def test_rgb_hsv_hwc():
|
||||||
|
|
||||||
|
|
||||||
def test_rgb_hsv_batch_hwc():
|
def test_rgb_hsv_batch_hwc():
|
||||||
|
"""
|
||||||
|
Feature: RgbToHsv and HsvToRgb ops
|
||||||
|
Description: Test RgbToHsv and HsvToRgb utilities with a batch of images in HWC format
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
|
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
|
||||||
rgb_np = rgb_flat.reshape((4, 2, 8, 3))
|
rgb_np = rgb_flat.reshape((4, 2, 8, 3))
|
||||||
hsv_base = np.array([
|
hsv_base = np.array([
|
||||||
|
@ -87,6 +97,11 @@ def test_rgb_hsv_batch_hwc():
|
||||||
|
|
||||||
|
|
||||||
def test_rgb_hsv_chw():
|
def test_rgb_hsv_chw():
|
||||||
|
"""
|
||||||
|
Feature: RgbToHsv and HsvToRgb ops
|
||||||
|
Description: Test RgbToHsv and HsvToRgb utilities with an image in CHW format
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
|
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
|
||||||
rgb_np = rgb_flat.reshape((3, 8, 8))
|
rgb_np = rgb_flat.reshape((3, 8, 8))
|
||||||
hsv_base = np.array([
|
hsv_base = np.array([
|
||||||
|
@ -110,6 +125,11 @@ def test_rgb_hsv_chw():
|
||||||
|
|
||||||
|
|
||||||
def test_rgb_hsv_batch_chw():
|
def test_rgb_hsv_batch_chw():
|
||||||
|
"""
|
||||||
|
Feature: RgbToHsv and HsvToRgb ops
|
||||||
|
Description: Test RgbToHsv and HsvToRgb utilities with a batch of images in HWC format
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
|
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
|
||||||
rgb_imgs = rgb_flat.reshape((4, 3, 2, 8))
|
rgb_imgs = rgb_flat.reshape((4, 3, 2, 8))
|
||||||
hsv_base_imgs = np.array([
|
hsv_base_imgs = np.array([
|
||||||
|
@ -132,6 +152,11 @@ def test_rgb_hsv_batch_chw():
|
||||||
|
|
||||||
|
|
||||||
def test_rgb_hsv_pipeline():
|
def test_rgb_hsv_pipeline():
|
||||||
|
"""
|
||||||
|
Feature: RgbToHsv and HsvToRgb ops
|
||||||
|
Description: Test RgbToHsv and HsvToRgb ops in data pipeline
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
# First dataset
|
# First dataset
|
||||||
transforms1 = [
|
transforms1 = [
|
||||||
vision.Decode(True),
|
vision.Decode(True),
|
||||||
|
|
|
@ -25,6 +25,11 @@ from util import dataset_equal
|
||||||
# via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4}
|
# via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4}
|
||||||
|
|
||||||
def test_sequential_sampler(print_res=False):
|
def test_sequential_sampler(print_res=False):
|
||||||
|
"""
|
||||||
|
Feature: SequentialSampler op
|
||||||
|
Description: Test SequentialSampler op with various num_samples and num_repeats args combinations
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
||||||
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||||
|
|
||||||
|
@ -48,6 +53,11 @@ def test_sequential_sampler(print_res=False):
|
||||||
|
|
||||||
|
|
||||||
def test_random_sampler(print_res=False):
|
def test_random_sampler(print_res=False):
|
||||||
|
"""
|
||||||
|
Feature: RandomSampler op
|
||||||
|
Description: Test RandomSampler with various replacement, num_samples, and num_repeats args combinations
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
ds.config.set_seed(1234)
|
ds.config.set_seed(1234)
|
||||||
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
||||||
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||||
|
@ -72,6 +82,11 @@ def test_random_sampler(print_res=False):
|
||||||
|
|
||||||
|
|
||||||
def test_random_sampler_multi_iter(print_res=False):
|
def test_random_sampler_multi_iter(print_res=False):
|
||||||
|
"""
|
||||||
|
Feature: RandomSampler op
|
||||||
|
Description: Test RandomSampler with multiple iteration based on num_repeats
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
||||||
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||||
|
|
||||||
|
@ -93,12 +108,22 @@ def test_random_sampler_multi_iter(print_res=False):
|
||||||
|
|
||||||
|
|
||||||
def test_sampler_py_api():
|
def test_sampler_py_api():
|
||||||
|
"""
|
||||||
|
Feature: Sampler op
|
||||||
|
Description: Test add_child op of a Sampler op to a Sampler op
|
||||||
|
Expectation: Runs successfully
|
||||||
|
"""
|
||||||
sampler = ds.SequentialSampler().parse()
|
sampler = ds.SequentialSampler().parse()
|
||||||
sampler1 = ds.RandomSampler().parse()
|
sampler1 = ds.RandomSampler().parse()
|
||||||
sampler1.add_child(sampler)
|
sampler1.add_child(sampler)
|
||||||
|
|
||||||
|
|
||||||
def test_python_sampler():
|
def test_python_sampler():
|
||||||
|
"""
|
||||||
|
Feature: Python Sampler op
|
||||||
|
Description: Test Python Sampler op with and without inheritance
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
||||||
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||||
|
|
||||||
|
@ -162,6 +187,11 @@ def test_python_sampler():
|
||||||
|
|
||||||
|
|
||||||
def test_sequential_sampler2():
|
def test_sequential_sampler2():
|
||||||
|
"""
|
||||||
|
Feature: SequentialSampler op
|
||||||
|
Description: Test SequentialSampler op with various start_index and num_samples args combinations
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
||||||
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||||
|
|
||||||
|
@ -188,6 +218,11 @@ def test_sequential_sampler2():
|
||||||
|
|
||||||
|
|
||||||
def test_subset_sampler():
|
def test_subset_sampler():
|
||||||
|
"""
|
||||||
|
Feature: SubsetSampler op
|
||||||
|
Description: Test SubsetSampler op with various indices and num_samples args combinations including invalid ones
|
||||||
|
Expectation: Output is equal to the expected output when input is valid, otherwise exception is raised
|
||||||
|
"""
|
||||||
def test_config(indices, num_samples=None, exception_msg=None):
|
def test_config(indices, num_samples=None, exception_msg=None):
|
||||||
def pipeline():
|
def pipeline():
|
||||||
sampler = ds.SubsetSampler(indices, num_samples)
|
sampler = ds.SubsetSampler(indices, num_samples)
|
||||||
|
@ -245,6 +280,11 @@ def test_subset_sampler():
|
||||||
|
|
||||||
|
|
||||||
def test_sampler_chain():
|
def test_sampler_chain():
|
||||||
|
"""
|
||||||
|
Feature: Chained Sampler
|
||||||
|
Description: ManifestDataset with sampler chain; add SequentialSampler as a child for DistributedSampler
|
||||||
|
Expectation: Correct error is raised as expected
|
||||||
|
"""
|
||||||
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
||||||
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||||
|
|
||||||
|
@ -279,6 +319,12 @@ def test_sampler_chain():
|
||||||
|
|
||||||
|
|
||||||
def test_add_sampler_invalid_input():
|
def test_add_sampler_invalid_input():
|
||||||
|
"""
|
||||||
|
Feature: Sampler op
|
||||||
|
Description: Test use_sampler op when the arg is not an instance of a sample and
|
||||||
|
another separate case when num_samples and sampler are specified at the same time in dataset arg
|
||||||
|
Expectation: Correct error is raised as expected
|
||||||
|
"""
|
||||||
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
||||||
_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||||
data1 = ds.ManifestDataset(manifest_file)
|
data1 = ds.ManifestDataset(manifest_file)
|
||||||
|
@ -298,12 +344,22 @@ def test_add_sampler_invalid_input():
|
||||||
|
|
||||||
|
|
||||||
def test_distributed_sampler_invalid_offset():
|
def test_distributed_sampler_invalid_offset():
|
||||||
|
"""
|
||||||
|
Feature: DistributedSampler op
|
||||||
|
Description: Test DistributedSampler op when offset is more than num_shards
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
with pytest.raises(RuntimeError) as info:
|
with pytest.raises(RuntimeError) as info:
|
||||||
_ = ds.DistributedSampler(num_shards=4, shard_id=0, shuffle=False, num_samples=None, offset=5).parse()
|
_ = ds.DistributedSampler(num_shards=4, shard_id=0, shuffle=False, num_samples=None, offset=5).parse()
|
||||||
assert "DistributedSampler: offset must be no more than num_shards(4)" in str(info.value)
|
assert "DistributedSampler: offset must be no more than num_shards(4)" in str(info.value)
|
||||||
|
|
||||||
|
|
||||||
def test_sampler_list():
|
def test_sampler_list():
|
||||||
|
"""
|
||||||
|
Feature: Sampler op
|
||||||
|
Description: Test various sampler args (int and not int) in ImageFolderDataset
|
||||||
|
Expectation: Output is equal to the expected output when sampler has data type int, otherwise exception is raised
|
||||||
|
"""
|
||||||
data1 = ds.ImageFolderDataset("../data/dataset/testPK/data", sampler=[1, 3, 5])
|
data1 = ds.ImageFolderDataset("../data/dataset/testPK/data", sampler=[1, 3, 5])
|
||||||
data21 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(2).skip(1)
|
data21 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(2).skip(1)
|
||||||
data22 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(4).skip(3)
|
data22 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(4).skip(3)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -33,18 +33,33 @@ def slice_compare(array, indexing, expected_array):
|
||||||
|
|
||||||
|
|
||||||
def test_slice_all():
|
def test_slice_all():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for whole array (using None, ellipsis, and boolean for Slice op arg)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([1, 2, 3, 4, 5], None, [1, 2, 3, 4, 5])
|
slice_compare([1, 2, 3, 4, 5], None, [1, 2, 3, 4, 5])
|
||||||
slice_compare([1, 2, 3, 4, 5], ..., [1, 2, 3, 4, 5])
|
slice_compare([1, 2, 3, 4, 5], ..., [1, 2, 3, 4, 5])
|
||||||
slice_compare([1, 2, 3, 4, 5], True, [1, 2, 3, 4, 5])
|
slice_compare([1, 2, 3, 4, 5], True, [1, 2, 3, 4, 5])
|
||||||
|
|
||||||
|
|
||||||
def test_slice_single_index():
|
def test_slice_single_index():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op with a single index
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([1, 2, 3, 4, 5], 0, [1])
|
slice_compare([1, 2, 3, 4, 5], 0, [1])
|
||||||
slice_compare([1, 2, 3, 4, 5], -3, [3])
|
slice_compare([1, 2, 3, 4, 5], -3, [3])
|
||||||
slice_compare([1, 2, 3, 4, 5], [0], [1])
|
slice_compare([1, 2, 3, 4, 5], [0], [1])
|
||||||
|
|
||||||
|
|
||||||
def test_slice_indices_multidim():
|
def test_slice_indices_multidim():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op using a multi dimension arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([[1, 2, 3, 4, 5]], [[0], [0]], 1)
|
slice_compare([[1, 2, 3, 4, 5]], [[0], [0]], 1)
|
||||||
slice_compare([[1, 2, 3, 4, 5]], [[0], [0, 3]], [[1, 4]])
|
slice_compare([[1, 2, 3, 4, 5]], [[0], [0, 3]], [[1, 4]])
|
||||||
slice_compare([[1, 2, 3, 4, 5]], [0], [[1, 2, 3, 4, 5]])
|
slice_compare([[1, 2, 3, 4, 5]], [0], [[1, 2, 3, 4, 5]])
|
||||||
|
@ -52,6 +67,11 @@ def test_slice_indices_multidim():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_list_index():
|
def test_slice_list_index():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op using list of indices as the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([1, 2, 3, 4, 5], [0, 1, 4], [1, 2, 5])
|
slice_compare([1, 2, 3, 4, 5], [0, 1, 4], [1, 2, 5])
|
||||||
slice_compare([1, 2, 3, 4, 5], [4, 1, 0], [5, 2, 1])
|
slice_compare([1, 2, 3, 4, 5], [4, 1, 0], [5, 2, 1])
|
||||||
slice_compare([1, 2, 3, 4, 5], [-1, 1, 0], [5, 2, 1])
|
slice_compare([1, 2, 3, 4, 5], [-1, 1, 0], [5, 2, 1])
|
||||||
|
@ -60,12 +80,22 @@ def test_slice_list_index():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_index_and_slice():
|
def test_slice_index_and_slice():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op where the arg is a list containing slice op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([[1, 2, 3, 4, 5]], [slice(0, 1), [4]], [[5]])
|
slice_compare([[1, 2, 3, 4, 5]], [slice(0, 1), [4]], [[5]])
|
||||||
slice_compare([[1, 2, 3, 4, 5]], [[0], slice(0, 2)], [[1, 2]])
|
slice_compare([[1, 2, 3, 4, 5]], [[0], slice(0, 2)], [[1, 2]])
|
||||||
slice_compare([[1, 2, 3, 4], [5, 6, 7, 8]], [[1], slice(2, 4, 1)], [[7, 8]])
|
slice_compare([[1, 2, 3, 4], [5, 6, 7, 8]], [[1], slice(2, 4, 1)], [[7, 8]])
|
||||||
|
|
||||||
|
|
||||||
def test_slice_slice_obj_1s():
|
def test_slice_slice_obj_1s():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op where the arg consists of slice op with 1 object
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(1), [1])
|
slice_compare([1, 2, 3, 4, 5], slice(1), [1])
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(4), [1, 2, 3, 4])
|
slice_compare([1, 2, 3, 4, 5], slice(4), [1, 2, 3, 4])
|
||||||
slice_compare([[1, 2, 3, 4], [5, 6, 7, 8]], [slice(2), slice(2)], [[1, 2], [5, 6]])
|
slice_compare([[1, 2, 3, 4], [5, 6, 7, 8]], [slice(2), slice(2)], [[1, 2], [5, 6]])
|
||||||
|
@ -73,6 +103,11 @@ def test_slice_slice_obj_1s():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_slice_obj_2s():
|
def test_slice_slice_obj_2s():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op where the arg consists of slice op with 2 objects
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(0, 2), [1, 2])
|
slice_compare([1, 2, 3, 4, 5], slice(0, 2), [1, 2])
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(2, 4), [3, 4])
|
slice_compare([1, 2, 3, 4, 5], slice(2, 4), [3, 4])
|
||||||
slice_compare([[1, 2, 3, 4], [5, 6, 7, 8]], [slice(0, 2), slice(1, 2)], [[2], [6]])
|
slice_compare([[1, 2, 3, 4], [5, 6, 7, 8]], [slice(0, 2), slice(1, 2)], [[2], [6]])
|
||||||
|
@ -80,6 +115,12 @@ def test_slice_slice_obj_2s():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_slice_obj_2s_multidim():
|
def test_slice_slice_obj_2s_multidim():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice using multi dimension array and Slice op has multi dimension
|
||||||
|
arg that consists of slice with 2 objects in the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([[1, 2, 3, 4, 5]], [slice(0, 1)], [[1, 2, 3, 4, 5]])
|
slice_compare([[1, 2, 3, 4, 5]], [slice(0, 1)], [[1, 2, 3, 4, 5]])
|
||||||
slice_compare([[1, 2, 3, 4, 5]], [slice(0, 1), slice(4)], [[1, 2, 3, 4]])
|
slice_compare([[1, 2, 3, 4, 5]], [slice(0, 1), slice(4)], [[1, 2, 3, 4]])
|
||||||
slice_compare([[1, 2, 3, 4, 5]], [slice(0, 1), slice(0, 3)], [[1, 2, 3]])
|
slice_compare([[1, 2, 3, 4, 5]], [slice(0, 1), slice(0, 3)], [[1, 2, 3]])
|
||||||
|
@ -89,7 +130,9 @@ def test_slice_slice_obj_2s_multidim():
|
||||||
|
|
||||||
def test_slice_slice_obj_3s():
|
def test_slice_slice_obj_3s():
|
||||||
"""
|
"""
|
||||||
Test passing in all parameters to the slice objects
|
Feature: Slice op
|
||||||
|
Description: Test Slice op where the arg consists of slice op with 3 objects
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(0, 2, 1), [1, 2])
|
slice_compare([1, 2, 3, 4, 5], slice(0, 2, 1), [1, 2])
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(0, 4, 1), [1, 2, 3, 4])
|
slice_compare([1, 2, 3, 4, 5], slice(0, 4, 1), [1, 2, 3, 4])
|
||||||
|
@ -109,6 +152,11 @@ def test_slice_slice_obj_3s():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_obj_3s_double():
|
def test_slice_obj_3s_double():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op where the arg consists of slice op with 3 objects using an array of doubles
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([1., 2., 3., 4., 5.], slice(0, 2, 1), [1., 2.])
|
slice_compare([1., 2., 3., 4., 5.], slice(0, 2, 1), [1., 2.])
|
||||||
slice_compare([1., 2., 3., 4., 5.], slice(0, 4, 1), [1., 2., 3., 4.])
|
slice_compare([1., 2., 3., 4., 5.], slice(0, 4, 1), [1., 2., 3., 4.])
|
||||||
slice_compare([1., 2., 3., 4., 5.], slice(0, 5, 2), [1., 3., 5.])
|
slice_compare([1., 2., 3., 4., 5.], slice(0, 5, 2), [1., 3., 5.])
|
||||||
|
@ -120,7 +168,9 @@ def test_slice_obj_3s_double():
|
||||||
|
|
||||||
def test_out_of_bounds_slicing():
|
def test_out_of_bounds_slicing():
|
||||||
"""
|
"""
|
||||||
Test passing indices outside of the input to the slice objects
|
Feature: Slice op
|
||||||
|
Description: Test Slice op with indices outside of the input to the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(-15, -1), [1, 2, 3, 4])
|
slice_compare([1, 2, 3, 4, 5], slice(-15, -1), [1, 2, 3, 4])
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(-15, 15), [1, 2, 3, 4, 5])
|
slice_compare([1, 2, 3, 4, 5], slice(-15, 15), [1, 2, 3, 4, 5])
|
||||||
|
@ -129,7 +179,9 @@ def test_out_of_bounds_slicing():
|
||||||
|
|
||||||
def test_slice_multiple_rows():
|
def test_slice_multiple_rows():
|
||||||
"""
|
"""
|
||||||
Test passing in multiple rows
|
Feature: Slice op
|
||||||
|
Description: Test Slice op with multiple rows
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
dataset = [[1], [3, 4, 5], [1, 2], [1, 2, 3, 4, 5, 6, 7]]
|
dataset = [[1], [3, 4, 5], [1, 2], [1, 2, 3, 4, 5, 6, 7]]
|
||||||
exp_dataset = [[], [4, 5], [2], [2, 3, 4]]
|
exp_dataset = [[], [4, 5], [2], [2, 3, 4]]
|
||||||
|
@ -147,7 +199,9 @@ def test_slice_multiple_rows():
|
||||||
|
|
||||||
def test_slice_none_and_ellipsis():
|
def test_slice_none_and_ellipsis():
|
||||||
"""
|
"""
|
||||||
Test passing None and Ellipsis to Slice
|
Feature: Slice op
|
||||||
|
Description: Test Slice op by passing None and Ellipsis in the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
dataset = [[1], [3, 4, 5], [1, 2], [1, 2, 3, 4, 5, 6, 7]]
|
dataset = [[1], [3, 4, 5], [1, 2], [1, 2, 3, 4, 5, 6, 7]]
|
||||||
exp_dataset = [[1], [3, 4, 5], [1, 2], [1, 2, 3, 4, 5, 6, 7]]
|
exp_dataset = [[1], [3, 4, 5], [1, 2], [1, 2, 3, 4, 5, 6, 7]]
|
||||||
|
@ -168,6 +222,11 @@ def test_slice_none_and_ellipsis():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_obj_neg():
|
def test_slice_obj_neg():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op with indices outside of the input (negative int) to the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(-1, -5, -1), [5, 4, 3, 2])
|
slice_compare([1, 2, 3, 4, 5], slice(-1, -5, -1), [5, 4, 3, 2])
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(-1), [1, 2, 3, 4])
|
slice_compare([1, 2, 3, 4, 5], slice(-1), [1, 2, 3, 4])
|
||||||
slice_compare([1, 2, 3, 4, 5], slice(-2), [1, 2, 3])
|
slice_compare([1, 2, 3, 4, 5], slice(-2), [1, 2, 3])
|
||||||
|
@ -177,11 +236,21 @@ def test_slice_obj_neg():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_all_str():
|
def test_slice_all_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for whole array of strings (using None and ellipsis for the arg)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], None, [b"1", b"2", b"3", b"4", b"5"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], None, [b"1", b"2", b"3", b"4", b"5"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], ..., [b"1", b"2", b"3", b"4", b"5"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], ..., [b"1", b"2", b"3", b"4", b"5"])
|
||||||
|
|
||||||
|
|
||||||
def test_slice_single_index_str():
|
def test_slice_single_index_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op with a single index for array of strings
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], [0, 1], [b"1", b"2"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], [0, 1], [b"1", b"2"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], [0, 1], [b"1", b"2"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], [0, 1], [b"1", b"2"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], [4], [b"5"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], [4], [b"5"])
|
||||||
|
@ -190,11 +259,21 @@ def test_slice_single_index_str():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_indexes_multidim_str():
|
def test_slice_indexes_multidim_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for array of strings using a multi dimensional arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [[0], 0], [[b"1"]])
|
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [[0], 0], [[b"1"]])
|
||||||
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [[0], [0, 1]], [[b"1", b"2"]])
|
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [[0], [0, 1]], [[b"1", b"2"]])
|
||||||
|
|
||||||
|
|
||||||
def test_slice_list_index_str():
|
def test_slice_list_index_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for array of strings with list of indices as the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], [0, 1, 4], [b"1", b"2", b"5"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], [0, 1, 4], [b"1", b"2", b"5"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], [4, 1, 0], [b"5", b"2", b"1"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], [4, 1, 0], [b"5", b"2", b"1"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], [3, 3, 3], [b"4", b"4", b"4"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], [3, 3, 3], [b"4", b"4", b"4"])
|
||||||
|
@ -202,6 +281,11 @@ def test_slice_list_index_str():
|
||||||
|
|
||||||
# test str index object here
|
# test str index object here
|
||||||
def test_slice_index_and_slice_str():
|
def test_slice_index_and_slice_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for array of strings where the arg is a list containing slice op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [slice(0, 1), 4], [[b"5"]])
|
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [slice(0, 1), 4], [[b"5"]])
|
||||||
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [[0], slice(0, 2)], [[b"1", b"2"]])
|
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [[0], slice(0, 2)], [[b"1", b"2"]])
|
||||||
slice_compare([[b"1", b"2", b"3", b"4"], [b"5", b"6", b"7", b"8"]], [[1], slice(2, 4, 1)],
|
slice_compare([[b"1", b"2", b"3", b"4"], [b"5", b"6", b"7", b"8"]], [[1], slice(2, 4, 1)],
|
||||||
|
@ -209,6 +293,11 @@ def test_slice_index_and_slice_str():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_slice_obj_1s_str():
|
def test_slice_slice_obj_1s_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for array of strings where the arg consists of slice op with 1 object
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(1), [b"1"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(1), [b"1"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(4), [b"1", b"2", b"3", b"4"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(4), [b"1", b"2", b"3", b"4"])
|
||||||
slice_compare([[b"1", b"2", b"3", b"4"], [b"5", b"6", b"7", b"8"]],
|
slice_compare([[b"1", b"2", b"3", b"4"], [b"5", b"6", b"7", b"8"]],
|
||||||
|
@ -217,6 +306,11 @@ def test_slice_slice_obj_1s_str():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_slice_obj_2s_str():
|
def test_slice_slice_obj_2s_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for array of strings where the arg consists of slice op with 2 objects
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(0, 2), [b"1", b"2"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(0, 2), [b"1", b"2"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(2, 4), [b"3", b"4"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(2, 4), [b"3", b"4"])
|
||||||
slice_compare([[b"1", b"2", b"3", b"4"], [b"5", b"6", b"7", b"8"]],
|
slice_compare([[b"1", b"2", b"3", b"4"], [b"5", b"6", b"7", b"8"]],
|
||||||
|
@ -224,6 +318,12 @@ def test_slice_slice_obj_2s_str():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_slice_obj_2s_multidim_str():
|
def test_slice_slice_obj_2s_multidim_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice using multi dimension array of strings and Slice op has multi dimension
|
||||||
|
arg that consists of slice with 2 objects in the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [slice(0, 1)], [[b"1", b"2", b"3", b"4", b"5"]])
|
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [slice(0, 1)], [[b"1", b"2", b"3", b"4", b"5"]])
|
||||||
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [slice(0, 1), slice(4)],
|
slice_compare([[b"1", b"2", b"3", b"4", b"5"]], [slice(0, 1), slice(4)],
|
||||||
[[b"1", b"2", b"3", b"4"]])
|
[[b"1", b"2", b"3", b"4"]])
|
||||||
|
@ -236,7 +336,9 @@ def test_slice_slice_obj_2s_multidim_str():
|
||||||
|
|
||||||
def test_slice_slice_obj_3s_str():
|
def test_slice_slice_obj_3s_str():
|
||||||
"""
|
"""
|
||||||
Test passing in all parameters to the slice objects
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for array of strings where the arg consists of slice op with 3 objects
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(0, 2, 1), [b"1", b"2"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(0, 2, 1), [b"1", b"2"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(0, 4, 1), [b"1", b"2", b"3", b"4"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(0, 4, 1), [b"1", b"2", b"3", b"4"])
|
||||||
|
@ -260,6 +362,11 @@ def test_slice_slice_obj_3s_str():
|
||||||
|
|
||||||
|
|
||||||
def test_slice_obj_neg_str():
|
def test_slice_obj_neg_str():
|
||||||
|
"""
|
||||||
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for array of strings with indices outside of the input (negative int) to the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-1, -5, -1), [b"5", b"4", b"3", b"2"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-1, -5, -1), [b"5", b"4", b"3", b"2"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-1), [b"1", b"2", b"3", b"4"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-1), [b"1", b"2", b"3", b"4"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-2), [b"1", b"2", b"3"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-2), [b"1", b"2", b"3"])
|
||||||
|
@ -270,7 +377,9 @@ def test_slice_obj_neg_str():
|
||||||
|
|
||||||
def test_out_of_bounds_slicing_str():
|
def test_out_of_bounds_slicing_str():
|
||||||
"""
|
"""
|
||||||
Test passing indices outside of the input to the slice objects
|
Feature: Slice op
|
||||||
|
Description: Test Slice op for array of strings with indices outside of the input to the arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-15, -1), [b"1", b"2", b"3", b"4"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-15, -1), [b"1", b"2", b"3", b"4"])
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-15, 15), [b"1", b"2", b"3", b"4", b"5"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-15, 15), [b"1", b"2", b"3", b"4", b"5"])
|
||||||
|
@ -286,7 +395,9 @@ def test_out_of_bounds_slicing_str():
|
||||||
|
|
||||||
def test_slice_exceptions():
|
def test_slice_exceptions():
|
||||||
"""
|
"""
|
||||||
Test passing in invalid parameters
|
Feature: Slice op
|
||||||
|
Description: Test Slice op with invalid parameters
|
||||||
|
Expectation: Correct error is raised as expected
|
||||||
"""
|
"""
|
||||||
with pytest.raises(RuntimeError) as info:
|
with pytest.raises(RuntimeError) as info:
|
||||||
slice_compare([b"1", b"2", b"3", b"4", b"5"], [5], [b"1", b"2", b"3", b"4", b"5"])
|
slice_compare([b"1", b"2", b"3", b"4", b"5"], [5], [b"1", b"2", b"3", b"4", b"5"])
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -31,35 +31,45 @@ SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||||
|
|
||||||
def test_slice_patches_01(plot=False):
|
def test_slice_patches_01(plot=False):
|
||||||
"""
|
"""
|
||||||
slice rgb image(100, 200) to 4 patches
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on RGB image(100, 200) to 4 patches
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_to_patches([100, 200], 2, 2, True, plot=plot)
|
slice_to_patches([100, 200], 2, 2, True, plot=plot)
|
||||||
|
|
||||||
|
|
||||||
def test_slice_patches_02(plot=False):
|
def test_slice_patches_02(plot=False):
|
||||||
"""
|
"""
|
||||||
no op
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on RGB image(100, 200) to 1 patch (no operation being applied)
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_to_patches([100, 200], 1, 1, True, plot=plot)
|
slice_to_patches([100, 200], 1, 1, True, plot=plot)
|
||||||
|
|
||||||
|
|
||||||
def test_slice_patches_03(plot=False):
|
def test_slice_patches_03(plot=False):
|
||||||
"""
|
"""
|
||||||
slice rgb image(99, 199) to 4 patches in pad mode
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on RGB image(99, 199) to 4 patches in pad mode
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_to_patches([99, 199], 2, 2, True, plot=plot)
|
slice_to_patches([99, 199], 2, 2, True, plot=plot)
|
||||||
|
|
||||||
|
|
||||||
def test_slice_patches_04(plot=False):
|
def test_slice_patches_04(plot=False):
|
||||||
"""
|
"""
|
||||||
slice rgb image(99, 199) to 4 patches in drop mode
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on RGB image(99, 199) to 4 patches in drop mode
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_to_patches([99, 199], 2, 2, False, plot=plot)
|
slice_to_patches([99, 199], 2, 2, False, plot=plot)
|
||||||
|
|
||||||
|
|
||||||
def test_slice_patches_05(plot=False):
|
def test_slice_patches_05(plot=False):
|
||||||
"""
|
"""
|
||||||
slice rgb image(99, 199) to 4 patches in pad mode
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on RGB image(99, 199) to 4 patches in pad mode with fill_value=255
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
slice_to_patches([99, 199], 2, 2, True, 255, plot=plot)
|
slice_to_patches([99, 199], 2, 2, True, 255, plot=plot)
|
||||||
|
|
||||||
|
@ -113,7 +123,9 @@ def slice_to_patches(ori_size, num_h, num_w, pad_or_drop, fill_value=0, plot=Fal
|
||||||
|
|
||||||
def test_slice_patches_exception_01():
|
def test_slice_patches_exception_01():
|
||||||
"""
|
"""
|
||||||
Test SlicePatches with invalid parameters
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op with invalid parameters
|
||||||
|
Expectation: Correct error is raised as expected
|
||||||
"""
|
"""
|
||||||
logger.info("test_Slice_Patches_exception")
|
logger.info("test_Slice_Patches_exception")
|
||||||
try:
|
try:
|
||||||
|
@ -141,6 +153,11 @@ def test_slice_patches_exception_01():
|
||||||
assert "Input fill_value is not within" in str(e)
|
assert "Input fill_value is not within" in str(e)
|
||||||
|
|
||||||
def test_slice_patches_06():
|
def test_slice_patches_06():
|
||||||
|
"""
|
||||||
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on random RGB image(158, 126, 1) to 16 patches
|
||||||
|
Expectation: Output's shape is equal to the expected output's shape
|
||||||
|
"""
|
||||||
image = np.random.randint(0, 255, (158, 126, 1)).astype(np.int32)
|
image = np.random.randint(0, 255, (158, 126, 1)).astype(np.int32)
|
||||||
slice_patches_op = vision.SlicePatches(2, 8)
|
slice_patches_op = vision.SlicePatches(2, 8)
|
||||||
patches = slice_patches_op(image)
|
patches = slice_patches_op(image)
|
||||||
|
@ -148,6 +165,11 @@ def test_slice_patches_06():
|
||||||
assert patches[0].shape == (79, 16, 1)
|
assert patches[0].shape == (79, 16, 1)
|
||||||
|
|
||||||
def test_slice_patches_07():
|
def test_slice_patches_07():
|
||||||
|
"""
|
||||||
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on random RGB image(158, 126) to 16 patches
|
||||||
|
Expectation: Output's shape is equal to the expected output's shape
|
||||||
|
"""
|
||||||
image = np.random.randint(0, 255, (158, 126)).astype(np.int32)
|
image = np.random.randint(0, 255, (158, 126)).astype(np.int32)
|
||||||
slice_patches_op = vision.SlicePatches(2, 8)
|
slice_patches_op = vision.SlicePatches(2, 8)
|
||||||
patches = slice_patches_op(image)
|
patches = slice_patches_op(image)
|
||||||
|
@ -155,6 +177,11 @@ def test_slice_patches_07():
|
||||||
assert patches[0].shape == (79, 16)
|
assert patches[0].shape == (79, 16)
|
||||||
|
|
||||||
def test_slice_patches_08():
|
def test_slice_patches_08():
|
||||||
|
"""
|
||||||
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on random RGB image(1, 56, 82, 256) to 4 patches
|
||||||
|
Expectation: Output's shape is equal to the expected output's shape
|
||||||
|
"""
|
||||||
np_data = np.random.randint(0, 255, (1, 56, 82, 256)).astype(np.uint8)
|
np_data = np.random.randint(0, 255, (1, 56, 82, 256)).astype(np.uint8)
|
||||||
dataset = ds.NumpySlicesDataset(np_data, column_names=["image"])
|
dataset = ds.NumpySlicesDataset(np_data, column_names=["image"])
|
||||||
slice_patches_op = vision.SlicePatches(2, 2)
|
slice_patches_op = vision.SlicePatches(2, 2)
|
||||||
|
@ -166,6 +193,11 @@ def test_slice_patches_08():
|
||||||
assert patch_shape == (28, 41, 256)
|
assert patch_shape == (28, 41, 256)
|
||||||
|
|
||||||
def test_slice_patches_09():
|
def test_slice_patches_09():
|
||||||
|
"""
|
||||||
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on random RGB image(56, 82, 256) to 12 patches with pad mode
|
||||||
|
Expectation: Output's shape is equal to the expected output's shape
|
||||||
|
"""
|
||||||
image = np.random.randint(0, 255, (56, 82, 256)).astype(np.uint8)
|
image = np.random.randint(0, 255, (56, 82, 256)).astype(np.uint8)
|
||||||
slice_patches_op = vision.SlicePatches(4, 3, mode.SliceMode.PAD)
|
slice_patches_op = vision.SlicePatches(4, 3, mode.SliceMode.PAD)
|
||||||
patches = slice_patches_op(image)
|
patches = slice_patches_op(image)
|
||||||
|
@ -173,12 +205,22 @@ def test_slice_patches_09():
|
||||||
assert patches[0].shape == (14, 28, 256)
|
assert patches[0].shape == (14, 28, 256)
|
||||||
|
|
||||||
def skip_test_slice_patches_10():
|
def skip_test_slice_patches_10():
|
||||||
|
"""
|
||||||
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on random RGB image(7000, 7000, 255) to 130 patches with drop mode
|
||||||
|
Expectation: Output's shape is equal to the expected output's shape
|
||||||
|
"""
|
||||||
image = np.random.randint(0, 255, (7000, 7000, 255)).astype(np.uint8)
|
image = np.random.randint(0, 255, (7000, 7000, 255)).astype(np.uint8)
|
||||||
slice_patches_op = vision.SlicePatches(10, 13, mode.SliceMode.DROP)
|
slice_patches_op = vision.SlicePatches(10, 13, mode.SliceMode.DROP)
|
||||||
patches = slice_patches_op(image)
|
patches = slice_patches_op(image)
|
||||||
assert patches[0].shape == (700, 538, 255)
|
assert patches[0].shape == (700, 538, 255)
|
||||||
|
|
||||||
def skip_test_slice_patches_11():
|
def skip_test_slice_patches_11():
|
||||||
|
"""
|
||||||
|
Feature: SlicePatches op
|
||||||
|
Description: Test SlicePatches op on random RGB image(1, 7000, 7000, 256) to 130 patches with drop mode
|
||||||
|
Expectation: Output's shape is equal to the expected output's shape
|
||||||
|
"""
|
||||||
np_data = np.random.randint(0, 255, (1, 7000, 7000, 256)).astype(np.uint8)
|
np_data = np.random.randint(0, 255, (1, 7000, 7000, 256)).astype(np.uint8)
|
||||||
dataset = ds.NumpySlicesDataset(np_data, column_names=["image"])
|
dataset = ds.NumpySlicesDataset(np_data, column_names=["image"])
|
||||||
slice_patches_op = vision.SlicePatches(10, 13, mode.SliceMode.DROP)
|
slice_patches_op = vision.SlicePatches(10, 13, mode.SliceMode.DROP)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -74,6 +74,12 @@ def split_with_invalid_inputs(d):
|
||||||
|
|
||||||
|
|
||||||
def test_unmappable_invalid_input():
|
def test_unmappable_invalid_input():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using unmappable dataset (TextFileDataset)
|
||||||
|
with various invalid inputs and applying split op on sharded dataset
|
||||||
|
Expectation: Correct error is raised as expected
|
||||||
|
"""
|
||||||
d = ds.TextFileDataset(text_file_dataset_path)
|
d = ds.TextFileDataset(text_file_dataset_path)
|
||||||
split_with_invalid_inputs(d)
|
split_with_invalid_inputs(d)
|
||||||
|
|
||||||
|
@ -84,6 +90,12 @@ def test_unmappable_invalid_input():
|
||||||
|
|
||||||
|
|
||||||
def test_unmappable_split():
|
def test_unmappable_split():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using unmappable dataset (TextFileDataset)
|
||||||
|
with absolute rows, exact percentages, and fuzzy percentages as input
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||||
|
|
||||||
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
||||||
|
@ -133,6 +145,11 @@ def test_unmappable_split():
|
||||||
|
|
||||||
|
|
||||||
def test_unmappable_randomize_deterministic():
|
def test_unmappable_randomize_deterministic():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using unmappable dataset (TextFileDataset) with randomization
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||||
|
|
||||||
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
||||||
|
@ -159,6 +176,11 @@ def test_unmappable_randomize_deterministic():
|
||||||
|
|
||||||
|
|
||||||
def test_unmappable_randomize_repeatable():
|
def test_unmappable_randomize_repeatable():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using unmappable dataset (TextFileDataset) with randomization followed by repeat op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||||
|
|
||||||
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
||||||
|
@ -188,6 +210,11 @@ def test_unmappable_randomize_repeatable():
|
||||||
|
|
||||||
|
|
||||||
def test_unmappable_get_dataset_size():
|
def test_unmappable_get_dataset_size():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using unmappable dataset (TextFileDataset) followed by get_dataset_size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
||||||
s1, s2 = d.split([0.8, 0.2])
|
s1, s2 = d.split([0.8, 0.2])
|
||||||
|
|
||||||
|
@ -197,6 +224,12 @@ def test_unmappable_get_dataset_size():
|
||||||
|
|
||||||
|
|
||||||
def test_unmappable_multi_split():
|
def test_unmappable_multi_split():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using unmappable dataset (TextFileDataset)
|
||||||
|
with randomization followed by deterministic split or another randomized split
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||||
|
|
||||||
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
||||||
|
@ -268,6 +301,12 @@ def test_unmappable_multi_split():
|
||||||
|
|
||||||
|
|
||||||
def test_mappable_invalid_input():
|
def test_mappable_invalid_input():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using mappable dataset (ManifestDataset) with invalid inputs and
|
||||||
|
applying split op on sharded dataset
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
d = ds.ManifestDataset(manifest_file)
|
d = ds.ManifestDataset(manifest_file)
|
||||||
split_with_invalid_inputs(d)
|
split_with_invalid_inputs(d)
|
||||||
|
|
||||||
|
@ -278,6 +317,12 @@ def test_mappable_invalid_input():
|
||||||
|
|
||||||
|
|
||||||
def test_mappable_split_general():
|
def test_mappable_split_general():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using mappable dataset (ManifestDataset)
|
||||||
|
with absolute rows, exact percentages, and fuzzy percentages
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
||||||
d = d.take(5)
|
d = d.take(5)
|
||||||
|
|
||||||
|
@ -286,11 +331,11 @@ def test_mappable_split_general():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1_output == [0, 1, 2, 3]
|
assert s1_output == [0, 1, 2, 3]
|
||||||
assert s2_output == [4]
|
assert s2_output == [4]
|
||||||
|
@ -300,11 +345,11 @@ def test_mappable_split_general():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1_output == [0, 1, 2, 3]
|
assert s1_output == [0, 1, 2, 3]
|
||||||
assert s2_output == [4]
|
assert s2_output == [4]
|
||||||
|
@ -314,17 +359,23 @@ def test_mappable_split_general():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1_output == [0, 1]
|
assert s1_output == [0, 1]
|
||||||
assert s2_output == [2, 3, 4]
|
assert s2_output == [2, 3, 4]
|
||||||
|
|
||||||
|
|
||||||
def test_mappable_split_optimized():
|
def test_mappable_split_optimized():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test optimized split op using mappable dataset (ManifestDataset)
|
||||||
|
with absolute rows, exact percentages, and fuzzy percentages
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
||||||
|
|
||||||
# absolute rows
|
# absolute rows
|
||||||
|
@ -332,11 +383,11 @@ def test_mappable_split_optimized():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1_output == [0, 1, 2, 3]
|
assert s1_output == [0, 1, 2, 3]
|
||||||
assert s2_output == [4]
|
assert s2_output == [4]
|
||||||
|
@ -346,11 +397,11 @@ def test_mappable_split_optimized():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1_output == [0, 1, 2, 3]
|
assert s1_output == [0, 1, 2, 3]
|
||||||
assert s2_output == [4]
|
assert s2_output == [4]
|
||||||
|
@ -360,17 +411,22 @@ def test_mappable_split_optimized():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1_output == [0, 1]
|
assert s1_output == [0, 1]
|
||||||
assert s2_output == [2, 3, 4]
|
assert s2_output == [2, 3, 4]
|
||||||
|
|
||||||
|
|
||||||
def test_mappable_randomize_deterministic():
|
def test_mappable_randomize_deterministic():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using mappable dataset (ManifestDataset) with randomization
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
||||||
ds.config.set_seed(53)
|
ds.config.set_seed(53)
|
||||||
|
|
||||||
|
@ -380,11 +436,11 @@ def test_mappable_randomize_deterministic():
|
||||||
for _ in range(10):
|
for _ in range(10):
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
# note no overlap
|
# note no overlap
|
||||||
assert s1_output == [0, 1, 3, 4]
|
assert s1_output == [0, 1, 3, 4]
|
||||||
|
@ -392,6 +448,11 @@ def test_mappable_randomize_deterministic():
|
||||||
|
|
||||||
|
|
||||||
def test_mappable_randomize_repeatable():
|
def test_mappable_randomize_repeatable():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using mappable dataset (ManifestDataset) followed by repeat op
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
||||||
ds.config.set_seed(53)
|
ds.config.set_seed(53)
|
||||||
|
|
||||||
|
@ -404,11 +465,11 @@ def test_mappable_randomize_repeatable():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
# note no overlap
|
# note no overlap
|
||||||
assert s1_output == [0, 1, 3, 4] * num_epochs
|
assert s1_output == [0, 1, 3, 4] * num_epochs
|
||||||
|
@ -416,6 +477,11 @@ def test_mappable_randomize_repeatable():
|
||||||
|
|
||||||
|
|
||||||
def test_mappable_sharding():
|
def test_mappable_sharding():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using mappable dataset (ManifestDataset) followed by sharding the dataset after split
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
# set arbitrary seed for repeatability for shard after split
|
# set arbitrary seed for repeatability for shard after split
|
||||||
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
||||||
ds.config.set_seed(53)
|
ds.config.set_seed(53)
|
||||||
|
@ -443,12 +509,12 @@ def test_mappable_sharding():
|
||||||
# shard 0
|
# shard 0
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
# shard 1
|
# shard 1
|
||||||
d2s1_output = []
|
d2s1_output = []
|
||||||
for item in d2s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in d2s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
d2s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
d2s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
rows_per_shard_per_epoch = 2
|
rows_per_shard_per_epoch = 2
|
||||||
assert len(s1_output) == rows_per_shard_per_epoch * num_epochs
|
assert len(s1_output) == rows_per_shard_per_epoch * num_epochs
|
||||||
|
@ -469,17 +535,22 @@ def test_mappable_sharding():
|
||||||
# test other split
|
# test other split
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
d2s2_output = []
|
d2s2_output = []
|
||||||
for item in d2s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in d2s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
d2s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
d2s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s2_output == [2]
|
assert s2_output == [2]
|
||||||
assert d2s2_output == [2]
|
assert d2s2_output == [2]
|
||||||
|
|
||||||
|
|
||||||
def test_mappable_get_dataset_size():
|
def test_mappable_get_dataset_size():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using mappable dataset (ManifestDataset) followed by get_dataset_size
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
||||||
s1, s2 = d.split([4, 1])
|
s1, s2 = d.split([4, 1])
|
||||||
|
|
||||||
|
@ -489,6 +560,12 @@ def test_mappable_get_dataset_size():
|
||||||
|
|
||||||
|
|
||||||
def test_mappable_multi_split():
|
def test_mappable_multi_split():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test randomized split op using mappable dataset (ManifestDataset) followed by
|
||||||
|
another split op with and without randomization
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
||||||
ds.config.set_seed(53)
|
ds.config.set_seed(53)
|
||||||
|
|
||||||
|
@ -499,7 +576,7 @@ def test_mappable_multi_split():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
assert s1_output == s1_correct_output
|
assert s1_output == s1_correct_output
|
||||||
|
|
||||||
# no randomize in second split
|
# no randomize in second split
|
||||||
|
@ -507,15 +584,15 @@ def test_mappable_multi_split():
|
||||||
|
|
||||||
s1s1_output = []
|
s1s1_output = []
|
||||||
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s1s2_output = []
|
s1s2_output = []
|
||||||
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s1s3_output = []
|
s1s3_output = []
|
||||||
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1s3_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1s1_output == [s1_correct_output[0]]
|
assert s1s1_output == [s1_correct_output[0]]
|
||||||
assert s1s2_output == [s1_correct_output[1], s1_correct_output[2]]
|
assert s1s2_output == [s1_correct_output[1], s1_correct_output[2]]
|
||||||
|
@ -523,7 +600,7 @@ def test_mappable_multi_split():
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
assert s2_output == [2]
|
assert s2_output == [2]
|
||||||
|
|
||||||
# randomize in second split
|
# randomize in second split
|
||||||
|
@ -534,15 +611,15 @@ def test_mappable_multi_split():
|
||||||
|
|
||||||
s1s1_output = []
|
s1s1_output = []
|
||||||
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s1s2_output = []
|
s1s2_output = []
|
||||||
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s1s3_output = []
|
s1s3_output = []
|
||||||
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1s3_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1s1_output == [s1_correct_output[random_sampler_ids[0]]]
|
assert s1s1_output == [s1_correct_output[random_sampler_ids[0]]]
|
||||||
assert s1s2_output == [s1_correct_output[random_sampler_ids[1]], s1_correct_output[random_sampler_ids[2]]]
|
assert s1s2_output == [s1_correct_output[random_sampler_ids[1]], s1_correct_output[random_sampler_ids[2]]]
|
||||||
|
@ -550,11 +627,16 @@ def test_mappable_multi_split():
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
assert s2_output == [2]
|
assert s2_output == [2]
|
||||||
|
|
||||||
|
|
||||||
def test_rounding():
|
def test_rounding():
|
||||||
|
"""
|
||||||
|
Feature: Split op
|
||||||
|
Description: Test split op using mappable dataset (ManifestDataset) with under rounding and over rounding arg
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
||||||
|
|
||||||
# under rounding
|
# under rounding
|
||||||
|
@ -562,11 +644,11 @@ def test_rounding():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1_output == [0, 1, 2]
|
assert s1_output == [0, 1, 2]
|
||||||
assert s2_output == [3, 4]
|
assert s2_output == [3, 4]
|
||||||
|
@ -576,15 +658,15 @@ def test_rounding():
|
||||||
|
|
||||||
s1_output = []
|
s1_output = []
|
||||||
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s1_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s2_output = []
|
s2_output = []
|
||||||
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s2_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
s3_output = []
|
s3_output = []
|
||||||
for item in s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
for item in s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||||
s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
s3_output.append(manifest_map.get((item["image"].shape[0], item["label"].item())))
|
||||||
|
|
||||||
assert s1_output == [0]
|
assert s1_output == [0]
|
||||||
assert s2_output == [1, 2]
|
assert s2_output == [1, 2]
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
# Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -21,6 +21,11 @@ from mindspore.dataset.text import to_str, to_bytes
|
||||||
|
|
||||||
|
|
||||||
def test_basic():
|
def test_basic():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test basic Tensor op on NumPy dataset with strings
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
x = np.array([["ab", "cde", "121"], ["x", "km", "789"]], dtype='S')
|
x = np.array([["ab", "cde", "121"], ["x", "km", "789"]], dtype='S')
|
||||||
n = cde.Tensor(x)
|
n = cde.Tensor(x)
|
||||||
arr = n.as_array()
|
arr = n.as_array()
|
||||||
|
@ -40,6 +45,11 @@ def compare(strings, dtype='S'):
|
||||||
|
|
||||||
|
|
||||||
def test_generator():
|
def test_generator():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test string tensor with various valid inputs using GeneratorDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
compare(["ab"])
|
compare(["ab"])
|
||||||
compare(["", ""])
|
compare(["", ""])
|
||||||
compare([""])
|
compare([""])
|
||||||
|
@ -72,6 +82,11 @@ chinese = np.array(["今天天气太好了我们一起去外面玩吧",
|
||||||
|
|
||||||
|
|
||||||
def test_batching_strings():
|
def test_batching_strings():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test applying Batch op to string tensor using GeneratorDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
for row in chinese:
|
for row in chinese:
|
||||||
yield (np.array(row),)
|
yield (np.array(row),)
|
||||||
|
@ -84,6 +99,11 @@ def test_batching_strings():
|
||||||
|
|
||||||
|
|
||||||
def test_map():
|
def test_map():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test applying Map op split to string tensor using GeneratorDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array(["ab cde 121"], dtype='S'),)
|
yield (np.array(["ab cde 121"], dtype='S'),)
|
||||||
|
|
||||||
|
@ -101,6 +121,11 @@ def test_map():
|
||||||
|
|
||||||
|
|
||||||
def test_map2():
|
def test_map2():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test applying Map op upper to string tensor using GeneratorDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen():
|
def gen():
|
||||||
yield (np.array(["ab cde 121"], dtype='S'),)
|
yield (np.array(["ab cde 121"], dtype='S'),)
|
||||||
|
|
||||||
|
@ -117,6 +142,11 @@ def test_map2():
|
||||||
|
|
||||||
|
|
||||||
def test_tfrecord1():
|
def test_tfrecord1():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test string tensor using TFRecordDataset with created schema using "string" type
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
s = ds.Schema()
|
s = ds.Schema()
|
||||||
s.add_column("line", "string", [])
|
s.add_column("line", "string", [])
|
||||||
s.add_column("words", "string", [-1])
|
s.add_column("words", "string", [-1])
|
||||||
|
@ -134,6 +164,11 @@ def test_tfrecord1():
|
||||||
|
|
||||||
|
|
||||||
def test_tfrecord2():
|
def test_tfrecord2():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test string tensor using TFRecordDataset with schema from a file
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = ds.TFRecordDataset("../data/dataset/testTextTFRecord/text.tfrecord", shuffle=False,
|
data = ds.TFRecordDataset("../data/dataset/testTextTFRecord/text.tfrecord", shuffle=False,
|
||||||
schema='../data/dataset/testTextTFRecord/datasetSchema.json')
|
schema='../data/dataset/testTextTFRecord/datasetSchema.json')
|
||||||
for i, d in enumerate(data.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
for i, d in enumerate(data.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
||||||
|
@ -146,6 +181,11 @@ def test_tfrecord2():
|
||||||
|
|
||||||
|
|
||||||
def test_tfrecord3():
|
def test_tfrecord3():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test string tensor using TFRecordDataset with created schema using mstype.string type
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
s = ds.Schema()
|
s = ds.Schema()
|
||||||
s.add_column("line", mstype.string, [])
|
s.add_column("line", mstype.string, [])
|
||||||
s.add_column("words", mstype.string, [-1, 2])
|
s.add_column("words", mstype.string, [-1, 2])
|
||||||
|
@ -184,6 +224,11 @@ def create_text_mindrecord():
|
||||||
|
|
||||||
|
|
||||||
def test_mindrecord():
|
def test_mindrecord():
|
||||||
|
"""
|
||||||
|
Feature: Tensor
|
||||||
|
Description: Test string tensor using MindDataset
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data = ds.MindDataset("../data/dataset/testTextMindRecord/test.mindrecord", shuffle=False)
|
data = ds.MindDataset("../data/dataset/testTextMindRecord/test.mindrecord", shuffle=False)
|
||||||
|
|
||||||
for i, d in enumerate(data.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
for i, d in enumerate(data.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
||||||
|
@ -228,6 +273,11 @@ def gen_var_cols_2d(num):
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_01():
|
def test_batch_padding_01():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding where input_shape=[x] and output_shape=[y] in which y > x
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
|
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
|
||||||
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([2, 2], b"-2"), "col1d": ([2], b"-1")})
|
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([2, 2], b"-2"), "col1d": ([2], b"-1")})
|
||||||
data1 = data1.repeat(2)
|
data1 = data1.repeat(2)
|
||||||
|
@ -238,6 +288,12 @@ def test_batch_padding_01():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_02():
|
def test_batch_padding_02():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding where padding in one dimension and truncate in the other, in which
|
||||||
|
input_shape=[x1,x2] and output_shape=[y1,y2] and y1 > x1 and y2 < x2
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
|
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
|
||||||
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([1, 2], "")})
|
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([1, 2], "")})
|
||||||
data1 = data1.repeat(2)
|
data1 = data1.repeat(2)
|
||||||
|
@ -247,6 +303,11 @@ def test_batch_padding_02():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_03():
|
def test_batch_padding_03():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding using automatic padding for a specific column
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_var_col(4)), ["col"])
|
data1 = ds.GeneratorDataset((lambda: gen_var_col(4)), ["col"])
|
||||||
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col": (None, "PAD_VALUE")}) # pad automatically
|
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col": (None, "PAD_VALUE")}) # pad automatically
|
||||||
data1 = data1.repeat(2)
|
data1 = data1.repeat(2)
|
||||||
|
@ -260,6 +321,11 @@ def test_batch_padding_03():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_04():
|
def test_batch_padding_04():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding using default setting for all columns
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_var_cols(2)), ["col1", "col2"])
|
data1 = ds.GeneratorDataset((lambda: gen_var_cols(2)), ["col1", "col2"])
|
||||||
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={}) # pad automatically
|
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={}) # pad automatically
|
||||||
data1 = data1.repeat(2)
|
data1 = data1.repeat(2)
|
||||||
|
@ -269,6 +335,11 @@ def test_batch_padding_04():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_padding_05():
|
def test_batch_padding_05():
|
||||||
|
"""
|
||||||
|
Feature: Batch Padding
|
||||||
|
Description: Test batch padding where None is in different places
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
data1 = ds.GeneratorDataset((lambda: gen_var_cols_2d(3)), ["col1", "col2"])
|
data1 = ds.GeneratorDataset((lambda: gen_var_cols_2d(3)), ["col1", "col2"])
|
||||||
data1 = data1.batch(batch_size=3, drop_remainder=False,
|
data1 = data1.batch(batch_size=3, drop_remainder=False,
|
||||||
pad_info={"col2": ([2, None], "-2"), "col1": (None, "-1")}) # pad automatically
|
pad_info={"col2": ([2, None], "-2"), "col1": (None, "-1")}) # pad automatically
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -35,7 +35,9 @@ def string_dataset_generator(strings):
|
||||||
|
|
||||||
def test_to_number_eager():
|
def test_to_number_eager():
|
||||||
"""
|
"""
|
||||||
Test ToNumber op is callable
|
Feature: ToNumber op
|
||||||
|
Description: Test ToNumber op in eager mode with valid and invalid tensor input
|
||||||
|
Expectation: Output is equal to the expected output for valid tensor and error is raised otherwise
|
||||||
"""
|
"""
|
||||||
input_strings = [["1", "2", "3"], ["4", "5", "6"]]
|
input_strings = [["1", "2", "3"], ["4", "5", "6"]]
|
||||||
op = text.ToNumber(mstype.int8)
|
op = text.ToNumber(mstype.int8)
|
||||||
|
@ -59,6 +61,11 @@ def test_to_number_eager():
|
||||||
|
|
||||||
|
|
||||||
def test_to_number_typical_case_integral():
|
def test_to_number_typical_case_integral():
|
||||||
|
"""
|
||||||
|
Feature: ToNumber op
|
||||||
|
Description: Test ToNumber op with int data type
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
input_strings = [["-121", "14"], ["-2219", "7623"], ["-8162536", "162371864"],
|
input_strings = [["-121", "14"], ["-2219", "7623"], ["-8162536", "162371864"],
|
||||||
["-1726483716", "98921728421"]]
|
["-1726483716", "98921728421"]]
|
||||||
|
|
||||||
|
@ -75,6 +82,11 @@ def test_to_number_typical_case_integral():
|
||||||
|
|
||||||
|
|
||||||
def test_to_number_typical_case_non_integral():
|
def test_to_number_typical_case_non_integral():
|
||||||
|
"""
|
||||||
|
Feature: ToNumber op
|
||||||
|
Description: Test ToNumber op with float data type
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
input_strings = [["-1.1", "1.4"], ["-2219.321", "7623.453"], ["-816256.234282", "162371864.243243"]]
|
input_strings = [["-1.1", "1.4"], ["-2219.321", "7623.453"], ["-816256.234282", "162371864.243243"]]
|
||||||
epsilons = [0.001, 0.001, 0.0001, 0.0001, 0.0000001, 0.0000001]
|
epsilons = [0.001, 0.001, 0.0001, 0.0001, 0.0000001, 0.0000001]
|
||||||
|
|
||||||
|
@ -105,6 +117,11 @@ def out_of_bounds_error_message_check(dataset, np_type, value_to_cast):
|
||||||
|
|
||||||
|
|
||||||
def test_to_number_out_of_bounds_integral():
|
def test_to_number_out_of_bounds_integral():
|
||||||
|
"""
|
||||||
|
Feature: ToNumber op
|
||||||
|
Description: Test ToNumber op with values that are out of bounds for int range
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
for np_type, ms_type in zip(np_integral_types, ms_integral_types):
|
for np_type, ms_type in zip(np_integral_types, ms_integral_types):
|
||||||
type_info = np.iinfo(np_type)
|
type_info = np.iinfo(np_type)
|
||||||
input_strings = [str(type_info.max + 10)]
|
input_strings = [str(type_info.max + 10)]
|
||||||
|
@ -119,6 +136,11 @@ def test_to_number_out_of_bounds_integral():
|
||||||
|
|
||||||
|
|
||||||
def test_to_number_out_of_bounds_non_integral():
|
def test_to_number_out_of_bounds_non_integral():
|
||||||
|
"""
|
||||||
|
Feature: ToNumber op
|
||||||
|
Description: Test ToNumber op with values that are out of bounds for float range
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
above_range = [str(np.finfo(np.float16).max * 10), str(np.finfo(np.float32).max * 10), "1.8e+308"]
|
above_range = [str(np.finfo(np.float16).max * 10), str(np.finfo(np.float32).max * 10), "1.8e+308"]
|
||||||
|
|
||||||
input_strings = [above_range[0]]
|
input_strings = [above_range[0]]
|
||||||
|
@ -179,6 +201,11 @@ def test_to_number_out_of_bounds_non_integral():
|
||||||
|
|
||||||
|
|
||||||
def test_to_number_boundaries_integral():
|
def test_to_number_boundaries_integral():
|
||||||
|
"""
|
||||||
|
Feature: ToNumber op
|
||||||
|
Description: Test ToNumber op with values that are exactly at the boundaries of the range of int
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
for np_type, ms_type in zip(np_integral_types, ms_integral_types):
|
for np_type, ms_type in zip(np_integral_types, ms_integral_types):
|
||||||
type_info = np.iinfo(np_type)
|
type_info = np.iinfo(np_type)
|
||||||
input_strings = [str(type_info.max)]
|
input_strings = [str(type_info.max)]
|
||||||
|
@ -201,6 +228,11 @@ def test_to_number_boundaries_integral():
|
||||||
|
|
||||||
|
|
||||||
def test_to_number_invalid_input():
|
def test_to_number_invalid_input():
|
||||||
|
"""
|
||||||
|
Feature: ToNumber op
|
||||||
|
Description: Test ToNumber op with invalid input string
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
input_strings = ["a8fa9ds8fa"]
|
input_strings = ["a8fa9ds8fa"]
|
||||||
dataset = ds.GeneratorDataset(string_dataset_generator(input_strings), "strings")
|
dataset = ds.GeneratorDataset(string_dataset_generator(input_strings), "strings")
|
||||||
dataset = dataset.map(operations=text.ToNumber(mstype.int32), input_columns=["strings"])
|
dataset = dataset.map(operations=text.ToNumber(mstype.int32), input_columns=["strings"])
|
||||||
|
@ -212,6 +244,11 @@ def test_to_number_invalid_input():
|
||||||
|
|
||||||
|
|
||||||
def test_to_number_invalid_type():
|
def test_to_number_invalid_type():
|
||||||
|
"""
|
||||||
|
Feature: ToNumber op
|
||||||
|
Description: Test ToNumber op to map into an invalid data type
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
with pytest.raises(TypeError) as info:
|
with pytest.raises(TypeError) as info:
|
||||||
dataset = ds.GeneratorDataset(string_dataset_generator(["a8fa9ds8fa"]), "strings")
|
dataset = ds.GeneratorDataset(string_dataset_generator(["a8fa9ds8fa"]), "strings")
|
||||||
dataset = dataset.map(operations=text.ToNumber(mstype.bool_), input_columns=["strings"])
|
dataset = dataset.map(operations=text.ToNumber(mstype.bool_), input_columns=["strings"])
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -45,9 +45,9 @@ def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
|
||||||
|
|
||||||
def test_vad_pipeline1():
|
def test_vad_pipeline1():
|
||||||
"""
|
"""
|
||||||
Feature: Vad
|
Feature: Vad op
|
||||||
Description: test Vad cpp op in pipeline
|
Description: Test Vad op in pipeline
|
||||||
Expectation: equal results from Mindspore and benchmark
|
Expectation: Equal results from Mindspore and benchmark
|
||||||
"""
|
"""
|
||||||
# <1000>
|
# <1000>
|
||||||
dataset = ds.NumpySlicesDataset(np.load(DATA_DIR + "single_channel.npy")[np.newaxis, :],
|
dataset = ds.NumpySlicesDataset(np.load(DATA_DIR + "single_channel.npy")[np.newaxis, :],
|
||||||
|
@ -75,9 +75,9 @@ def test_vad_pipeline1():
|
||||||
|
|
||||||
def test_vad_pipeline2():
|
def test_vad_pipeline2():
|
||||||
"""
|
"""
|
||||||
Feature: Vad
|
Feature: Vad op
|
||||||
Description: test Vad cpp op in pipeline
|
Description: Test Vad op in pipeline
|
||||||
Expectation: equal results from Mindspore and benchmark
|
Expectation: Equal results from Mindspore and benchmark
|
||||||
"""
|
"""
|
||||||
# <1, 1000> trigger level and time
|
# <1, 1000> trigger level and time
|
||||||
dataset = ds.NumpySlicesDataset(np.load(DATA_DIR + "single_channel.npy")
|
dataset = ds.NumpySlicesDataset(np.load(DATA_DIR + "single_channel.npy")
|
||||||
|
@ -130,9 +130,9 @@ def test_vad_pipeline2():
|
||||||
|
|
||||||
def test_vad_pipeline3():
|
def test_vad_pipeline3():
|
||||||
"""
|
"""
|
||||||
Feature: Vad
|
Feature: Vad op
|
||||||
Description: test Vad cpp op in pipeline
|
Description: Test Vad op in pipeline
|
||||||
Expectation: equal results from Mindspore and benchmark
|
Expectation: Equal results from Mindspore and benchmark
|
||||||
"""
|
"""
|
||||||
# <1, 1000> noise
|
# <1, 1000> noise
|
||||||
dataset = ds.NumpySlicesDataset(np.load(DATA_DIR + "single_channel.npy")
|
dataset = ds.NumpySlicesDataset(np.load(DATA_DIR + "single_channel.npy")
|
||||||
|
@ -200,9 +200,9 @@ def test_vad_pipeline3():
|
||||||
|
|
||||||
def test_vad_pipeline_invalid_param1():
|
def test_vad_pipeline_invalid_param1():
|
||||||
"""
|
"""
|
||||||
Feature: Vad
|
Feature: Vad op
|
||||||
Description: test Vad with invalid input parameters
|
Description: Test Vad with invalid input parameters
|
||||||
Expectation: throw ValueError or TypeError
|
Expectation: Throw ValueError or TypeError
|
||||||
"""
|
"""
|
||||||
logger.info("test InverseMelScale op with default values")
|
logger.info("test InverseMelScale op with default values")
|
||||||
in_data = np.load(DATA_DIR + "single_channel.npy")[np.newaxis, :]
|
in_data = np.load(DATA_DIR + "single_channel.npy")[np.newaxis, :]
|
||||||
|
@ -243,9 +243,9 @@ def test_vad_pipeline_invalid_param1():
|
||||||
|
|
||||||
def test_vad_pipeline_invalid_param2():
|
def test_vad_pipeline_invalid_param2():
|
||||||
"""
|
"""
|
||||||
Feature: Vad
|
Feature: Vad op
|
||||||
Description: test Vad with invalid input parameters
|
Description: Test Vad with invalid input parameters
|
||||||
Expectation: throw ValueError or TypeError
|
Expectation: Throw ValueError or TypeError
|
||||||
"""
|
"""
|
||||||
logger.info("test InverseMelScale op with default values")
|
logger.info("test InverseMelScale op with default values")
|
||||||
in_data = np.load(DATA_DIR + "single_channel.npy")[np.newaxis, :]
|
in_data = np.load(DATA_DIR + "single_channel.npy")[np.newaxis, :]
|
||||||
|
@ -283,9 +283,9 @@ def test_vad_pipeline_invalid_param2():
|
||||||
|
|
||||||
def test_vad_pipeline_invalid_param3():
|
def test_vad_pipeline_invalid_param3():
|
||||||
"""
|
"""
|
||||||
Feature: Vad
|
Feature: Vad op
|
||||||
Description: test Vad with invalid input parameters
|
Description: Test Vad with invalid input parameters
|
||||||
Expectation: throw ValueError or TypeError
|
Expectation: Throw ValueError or TypeError
|
||||||
"""
|
"""
|
||||||
logger.info("test InverseMelScale op with default values")
|
logger.info("test InverseMelScale op with default values")
|
||||||
in_data = np.load(DATA_DIR + "single_channel.npy")[np.newaxis, :]
|
in_data = np.load(DATA_DIR + "single_channel.npy")[np.newaxis, :]
|
||||||
|
@ -343,9 +343,9 @@ def test_vad_pipeline_invalid_param3():
|
||||||
|
|
||||||
def test_vad_eager():
|
def test_vad_eager():
|
||||||
"""
|
"""
|
||||||
Feature: Vad
|
Feature: Vad op
|
||||||
Description: test Vad cpp op with eager mode
|
Description: Test Vad op with eager mode
|
||||||
Expectation: equal results from Mindspore and benchmark
|
Expectation: Equal results from Mindspore and benchmark
|
||||||
"""
|
"""
|
||||||
spectrogram = np.load(DATA_DIR + "single_channel.npy")
|
spectrogram = np.load(DATA_DIR + "single_channel.npy")
|
||||||
out_ms = c_audio.Vad(sample_rate=600)(spectrogram)
|
out_ms = c_audio.Vad(sample_rate=600)(spectrogram)
|
||||||
|
|
|
@ -19,6 +19,13 @@ from mindspore import log as logger
|
||||||
|
|
||||||
|
|
||||||
def test_batch_corner_cases():
|
def test_batch_corner_cases():
|
||||||
|
"""
|
||||||
|
Feature: Batch op
|
||||||
|
Description: Test batch variations using corner cases:
|
||||||
|
- where batch_size is greater than the entire epoch, with drop equals to both val
|
||||||
|
- where Batch op is done before Repeat op with different drop
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def gen(num):
|
def gen(num):
|
||||||
for i in range(num):
|
for i in range(num):
|
||||||
yield (np.array([i]),)
|
yield (np.array([i]),)
|
||||||
|
@ -192,6 +199,11 @@ def test_get_batchsize_on_callable_batchsize():
|
||||||
|
|
||||||
|
|
||||||
def test_basic_batch_map():
|
def test_basic_batch_map():
|
||||||
|
"""
|
||||||
|
Feature: Batch op
|
||||||
|
Description: Test basic map Batch op with per_batch_map
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def check_res(arr1, arr2):
|
def check_res(arr1, arr2):
|
||||||
for ind, _ in enumerate(arr1):
|
for ind, _ in enumerate(arr1):
|
||||||
if not np.array_equal(arr1[ind], np.array(arr2[ind])):
|
if not np.array_equal(arr1[ind], np.array(arr2[ind])):
|
||||||
|
@ -225,6 +237,11 @@ def test_basic_batch_map():
|
||||||
|
|
||||||
|
|
||||||
def test_batch_multi_col_map():
|
def test_batch_multi_col_map():
|
||||||
|
"""
|
||||||
|
Feature: Batch op
|
||||||
|
Description: Test map Batch op with multiple columns input with per_batch_map
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def check_res(arr1, arr2):
|
def check_res(arr1, arr2):
|
||||||
for ind, _ in enumerate(arr1):
|
for ind, _ in enumerate(arr1):
|
||||||
if not np.array_equal(arr1[ind], np.array(arr2[ind])):
|
if not np.array_equal(arr1[ind], np.array(arr2[ind])):
|
||||||
|
@ -274,6 +291,11 @@ def test_batch_multi_col_map():
|
||||||
|
|
||||||
|
|
||||||
def test_var_batch_multi_col_map():
|
def test_var_batch_multi_col_map():
|
||||||
|
"""
|
||||||
|
Feature: Batch op
|
||||||
|
Description: Test Batch op with a function arg for batch_size using multiple columns input with per_batch_map
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
def check_res(arr1, arr2):
|
def check_res(arr1, arr2):
|
||||||
for ind, _ in enumerate(arr1):
|
for ind, _ in enumerate(arr1):
|
||||||
if not np.array_equal(arr1[ind], np.array(arr2[ind])):
|
if not np.array_equal(arr1[ind], np.array(arr2[ind])):
|
||||||
|
@ -314,6 +336,11 @@ def test_var_batch_multi_col_map():
|
||||||
|
|
||||||
|
|
||||||
def test_var_batch_var_resize():
|
def test_var_batch_var_resize():
|
||||||
|
"""
|
||||||
|
Feature: Batch op
|
||||||
|
Description: Test Batch op with a function arg for batch_size with resize as per_batch_map
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
# fake resize image according to its batch number, if it's 5-th batch, resize to (5^2, 5^2) = (25, 25)
|
# fake resize image according to its batch number, if it's 5-th batch, resize to (5^2, 5^2) = (25, 25)
|
||||||
def np_psedo_resize(col, batchInfo):
|
def np_psedo_resize(col, batchInfo):
|
||||||
s = (batchInfo.get_batch_num() + 1) ** 2
|
s = (batchInfo.get_batch_num() + 1) ** 2
|
||||||
|
@ -332,6 +359,11 @@ def test_var_batch_var_resize():
|
||||||
|
|
||||||
|
|
||||||
def test_exception():
|
def test_exception():
|
||||||
|
"""
|
||||||
|
Feature: Batch op
|
||||||
|
Description: Test Batch op with bad batch size and bad map function
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
def gen(num):
|
def gen(num):
|
||||||
for i in range(num):
|
for i in range(num):
|
||||||
yield (np.array([i]),)
|
yield (np.array([i]),)
|
||||||
|
@ -362,6 +394,11 @@ def test_exception():
|
||||||
|
|
||||||
|
|
||||||
def test_multi_col_map():
|
def test_multi_col_map():
|
||||||
|
"""
|
||||||
|
Feature: Batch op
|
||||||
|
Description: Test Batch op with multiple columns with various per_batch_map args with valid and invalid inputs
|
||||||
|
Expectation: Output is equal to the expected output for valid input and error is raised otherwise
|
||||||
|
"""
|
||||||
def gen_2_cols(num):
|
def gen_2_cols(num):
|
||||||
for i in range(1, 1 + num):
|
for i in range(1, 1 + num):
|
||||||
yield (np.array([i]), np.array([i ** 2]))
|
yield (np.array([i]), np.array([i ** 2]))
|
||||||
|
@ -427,6 +464,11 @@ def test_multi_col_map():
|
||||||
|
|
||||||
|
|
||||||
def test_exceptions_2():
|
def test_exceptions_2():
|
||||||
|
"""
|
||||||
|
Feature: Batch op
|
||||||
|
Description: Test Batch op with invalid column name and invalid per_batch_map function argument
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
def gen(num):
|
def gen(num):
|
||||||
for i in range(num):
|
for i in range(num):
|
||||||
yield (np.array([i]),)
|
yield (np.array([i]),)
|
||||||
|
|
|
@ -123,7 +123,9 @@ def test_vocab_exception():
|
||||||
|
|
||||||
def test_lookup_callable():
|
def test_lookup_callable():
|
||||||
"""
|
"""
|
||||||
Test lookup is callable
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test Lookup with text.Vocab as the argument
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
"""
|
"""
|
||||||
logger.info("test_lookup_callable")
|
logger.info("test_lookup_callable")
|
||||||
vocab = text.Vocab.from_list(['深', '圳', '欢', '迎', '您'])
|
vocab = text.Vocab.from_list(['深', '圳', '欢', '迎', '您'])
|
||||||
|
@ -133,6 +135,11 @@ def test_lookup_callable():
|
||||||
|
|
||||||
|
|
||||||
def test_from_list_tutorial():
|
def test_from_list_tutorial():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test from_list() method from text.Vocab basic usage tutorial
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", "<unk>"], True)
|
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", "<unk>"], True)
|
||||||
lookup = text.Lookup(vocab, "<unk>")
|
lookup = text.Lookup(vocab, "<unk>")
|
||||||
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
||||||
|
@ -145,6 +152,11 @@ def test_from_list_tutorial():
|
||||||
|
|
||||||
|
|
||||||
def test_from_file_tutorial():
|
def test_from_file_tutorial():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test from_file() method from text.Vocab basic usage tutorial
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
vocab = text.Vocab.from_file(VOCAB_FILE, ",", None, ["<pad>", "<unk>"], True)
|
vocab = text.Vocab.from_file(VOCAB_FILE, ",", None, ["<pad>", "<unk>"], True)
|
||||||
lookup = text.Lookup(vocab)
|
lookup = text.Lookup(vocab)
|
||||||
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
||||||
|
@ -157,6 +169,11 @@ def test_from_file_tutorial():
|
||||||
|
|
||||||
|
|
||||||
def test_from_dict_tutorial():
|
def test_from_dict_tutorial():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test from_dict() method from text.Vocab basic usage tutorial
|
||||||
|
Expectation: Output is equal to the expected output
|
||||||
|
"""
|
||||||
vocab = text.Vocab.from_dict({"home": 3, "behind": 2, "the": 4, "world": 5, "<unk>": 6})
|
vocab = text.Vocab.from_dict({"home": 3, "behind": 2, "the": 4, "world": 5, "<unk>": 6})
|
||||||
lookup = text.Lookup(vocab, "<unk>") # any unknown token will be mapped to the id of <unk>
|
lookup = text.Lookup(vocab, "<unk>") # any unknown token will be mapped to the id of <unk>
|
||||||
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
||||||
|
@ -169,6 +186,11 @@ def test_from_dict_tutorial():
|
||||||
|
|
||||||
|
|
||||||
def test_from_dict_exception():
|
def test_from_dict_exception():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test from_dict() method from text.Vocab with invalid input
|
||||||
|
Expectation: Error is raised as expected
|
||||||
|
"""
|
||||||
try:
|
try:
|
||||||
vocab = text.Vocab.from_dict({"home": -1, "behind": 0})
|
vocab = text.Vocab.from_dict({"home": -1, "behind": 0})
|
||||||
if not vocab:
|
if not vocab:
|
||||||
|
@ -178,6 +200,11 @@ def test_from_dict_exception():
|
||||||
|
|
||||||
|
|
||||||
def test_from_list():
|
def test_from_list():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test from_list() method from text.Vocab with various valid input cases and invalid input
|
||||||
|
Expectation: Output is equal to the expected output, except for invalid input cases where correct error is raised
|
||||||
|
"""
|
||||||
def gen(texts):
|
def gen(texts):
|
||||||
for word in texts.split(" "):
|
for word in texts.split(" "):
|
||||||
yield (np.array(word, dtype='S'),)
|
yield (np.array(word, dtype='S'),)
|
||||||
|
@ -216,6 +243,11 @@ def test_from_list():
|
||||||
|
|
||||||
|
|
||||||
def test_from_list_lookup_empty_string():
|
def test_from_list_lookup_empty_string():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test from_list() with and without empty string in the Lookup op where unknown_token=None
|
||||||
|
Expectation: Output is equal to the expected output when "" in Lookup op and error is raised otherwise
|
||||||
|
"""
|
||||||
# "" is a valid word in vocab, which can be looked up by LookupOp
|
# "" is a valid word in vocab, which can be looked up by LookupOp
|
||||||
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", ""], True)
|
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", ""], True)
|
||||||
lookup = text.Lookup(vocab, "")
|
lookup = text.Lookup(vocab, "")
|
||||||
|
@ -241,6 +273,11 @@ def test_from_list_lookup_empty_string():
|
||||||
|
|
||||||
|
|
||||||
def test_from_file():
|
def test_from_file():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test from_file() method from text.Vocab with various valid and invalid special_tokens and vocab_size
|
||||||
|
Expectation: Output is equal to the expected output for valid parameters and error is raised otherwise
|
||||||
|
"""
|
||||||
def gen(texts):
|
def gen(texts):
|
||||||
for word in texts.split(" "):
|
for word in texts.split(" "):
|
||||||
yield (np.array(word, dtype='S'),)
|
yield (np.array(word, dtype='S'),)
|
||||||
|
@ -272,6 +309,11 @@ def test_from_file():
|
||||||
|
|
||||||
|
|
||||||
def test_lookup_cast_type():
|
def test_lookup_cast_type():
|
||||||
|
"""
|
||||||
|
Feature: Python text.Vocab class
|
||||||
|
Description: Test Lookup op cast type with various valid and invalid data types
|
||||||
|
Expectation: Output is equal to the expected output for valid data types and error is raised otherwise
|
||||||
|
"""
|
||||||
def gen(texts):
|
def gen(texts):
|
||||||
for word in texts.split(" "):
|
for word in texts.split(" "):
|
||||||
yield (np.array(word, dtype='S'),)
|
yield (np.array(word, dtype='S'),)
|
||||||
|
|
Loading…
Reference in New Issue