forked from mindspore-Ecosystem/mindspore
Add nn.Tril function
This commit is contained in:
parent
7a192973ff
commit
e1dba1337c
|
@ -35,7 +35,7 @@ from .activation import get_activation
|
||||||
|
|
||||||
|
|
||||||
__all__ = ['Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'Pad', 'Unfold',
|
__all__ = ['Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'Pad', 'Unfold',
|
||||||
'MatrixDiag', 'MatrixDiagPart', 'MatrixSetDiag']
|
'Tril', 'Triu', 'MatrixDiag', 'MatrixDiagPart', 'MatrixSetDiag']
|
||||||
|
|
||||||
|
|
||||||
class Dropout(Cell):
|
class Dropout(Cell):
|
||||||
|
@ -547,6 +547,80 @@ class Unfold(Cell):
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
@constexpr
|
||||||
|
def tril(x_shape, x_dtype, k):
|
||||||
|
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "tril")
|
||||||
|
Validator.check_is_int(k, "k value", "tril")
|
||||||
|
mask = np.tril(np.ones(x_shape), k)
|
||||||
|
return Tensor(mask, x_dtype)
|
||||||
|
|
||||||
|
|
||||||
|
class Tril(Cell):
|
||||||
|
"""
|
||||||
|
Returns a tensor with elements above the kth diagonal zeroed.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **x** (Tensor) - The input tensor.
|
||||||
|
- **k** (Int) - The index of diagonal. Default: 0
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, has the same type as input `x`.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
|
||||||
|
>>> tril = nn.Tril()
|
||||||
|
>>> result = tril(x)
|
||||||
|
>>> print(result)
|
||||||
|
[[1 0]
|
||||||
|
[3 4]]
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(Tril, self).__init__()
|
||||||
|
self.dtype = P.DType()
|
||||||
|
self.mul = P.Mul()
|
||||||
|
|
||||||
|
def construct(self, x, k=0):
|
||||||
|
assist = tril(x.shape, self.dtype(x), k)
|
||||||
|
return self.mul(x, assist)
|
||||||
|
|
||||||
|
|
||||||
|
@constexpr
|
||||||
|
def triu(x_shape, x_dtype, k):
|
||||||
|
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "triu")
|
||||||
|
Validator.check_is_int(k, "k value", "triu")
|
||||||
|
mask = np.triu(np.ones(x_shape), k)
|
||||||
|
return Tensor(mask, x_dtype)
|
||||||
|
|
||||||
|
|
||||||
|
class Triu(Cell):
|
||||||
|
"""
|
||||||
|
Returns a tensor with elements below the kth diagonal zeroed.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **x** (Tensor) - The input tensor.
|
||||||
|
- **k** (Int) - The index of diagonal. Default: 0
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, has the same type as input `x`.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
|
||||||
|
>>> tril = nn.Tril()
|
||||||
|
>>> result = tril(x)
|
||||||
|
>>> print(result)
|
||||||
|
[[1 2]
|
||||||
|
[0 4]]
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(Triu, self).__init__()
|
||||||
|
self.dtype = P.DType()
|
||||||
|
self.mul = P.Mul()
|
||||||
|
|
||||||
|
def construct(self, x, k=0):
|
||||||
|
assist = triu(x.shape, self.dtype(x), k)
|
||||||
|
return self.mul(x, assist)
|
||||||
|
|
||||||
|
|
||||||
@constexpr
|
@constexpr
|
||||||
def _get_matrix_diag_assist(x_shape, x_dtype):
|
def _get_matrix_diag_assist(x_shape, x_dtype):
|
||||||
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "_get_matrix_diag_assist")
|
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "_get_matrix_diag_assist")
|
||||||
|
|
|
@ -0,0 +1,108 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
test nn.Tril()
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
|
||||||
|
|
||||||
|
def test_tril():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
tril = nn.Tril()
|
||||||
|
return tril(self.value, 0)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
out = net()
|
||||||
|
assert np.sum(out.asnumpy()) == 34
|
||||||
|
|
||||||
|
|
||||||
|
def test_tril_1():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
tril = nn.Tril()
|
||||||
|
return tril(self.value, 1)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
out = net()
|
||||||
|
assert np.sum(out.asnumpy()) == 42
|
||||||
|
|
||||||
|
|
||||||
|
def test_tril_2():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
tril = nn.Tril()
|
||||||
|
return tril(self.value, -1)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
out = net()
|
||||||
|
assert np.sum(out.asnumpy()) == 19
|
||||||
|
|
||||||
|
|
||||||
|
def test_tril_parameter():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
tril = nn.Tril()
|
||||||
|
return tril(x, 0)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_tril_parameter_1():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
tril = nn.Tril()
|
||||||
|
return tril(x, 1)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_tril_parameter_2():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
tril = nn.Tril()
|
||||||
|
return tril(x, -1)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
|
@ -0,0 +1,108 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
test nn.Triu()
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
|
||||||
|
|
||||||
|
def test_triu():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
triu = nn.Triu()
|
||||||
|
return triu(self.value, 0)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
out = net()
|
||||||
|
assert np.sum(out.asnumpy()) == 26
|
||||||
|
|
||||||
|
|
||||||
|
def test_triu_1():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
triu = nn.Triu()
|
||||||
|
return triu(self.value, 1)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
out = net()
|
||||||
|
assert np.sum(out.asnumpy()) == 11
|
||||||
|
|
||||||
|
|
||||||
|
def test_triu_2():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
triu = nn.Triu()
|
||||||
|
return triu(self.value, -1)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
out = net()
|
||||||
|
assert np.sum(out.asnumpy()) == 38
|
||||||
|
|
||||||
|
|
||||||
|
def test_triu_parameter():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
triu = nn.Triu()
|
||||||
|
return triu(x, 0)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_triu_parameter_1():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
triu = nn.Triu()
|
||||||
|
return triu(x, 1)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_triu_parameter_2():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
triu = nn.Triu()
|
||||||
|
return triu(x, -1)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
Loading…
Reference in New Issue