forked from mindspore-Ecosystem/mindspore
!42876 [MS][LITE]Change micro Cortex-M working buffer settings
Merge pull request !42876 from gongdaguo1/micro_fix_fff
This commit is contained in:
commit
e0500c9ae5
|
@ -62,6 +62,11 @@ MS_API void MSModelDestroy(MSModelHandle *model);
|
|||
/// \param[in] workspace_size Define the workspace size.
|
||||
MS_API void MSModelSetWorkspace(MSModelHandle model, void *workspace, size_t workspace_size);
|
||||
|
||||
/// \brief Calculate the workspace size required for model inference. Only valid for Iot.
|
||||
///
|
||||
/// \param[in] model Model object handle.
|
||||
MS_API size_t MSModelCalcWorkspaceSize(MSModelHandle model);
|
||||
|
||||
/// \brief Build the model from model file buffer so that it can run on a device.
|
||||
///
|
||||
/// \param[in] model Model object handle.
|
||||
|
|
|
@ -791,6 +791,7 @@ if(MSLITE_GPU_BACKEND STREQUAL opencl)
|
|||
endif()
|
||||
|
||||
file(GLOB FBS_FILES ${CMAKE_CURRENT_SOURCE_DIR}/schema/*.fbs)
|
||||
|
||||
ms_build_flatbuffers_lite(FBS_FILES ${CMAKE_CURRENT_SOURCE_DIR}/schema/ fbs_src ${CMAKE_BINARY_DIR}/schema "")
|
||||
ms_build_flatbuffers_lite(FBS_FILES ${CMAKE_CURRENT_SOURCE_DIR}/schema/ fbs_inner_src ${CMAKE_BINARY_DIR}/schema/inner
|
||||
"inner")
|
||||
|
|
|
@ -317,6 +317,11 @@ void MSModelSetWorkspace(MSModelHandle model, void *workspace, size_t workspace_
|
|||
return;
|
||||
}
|
||||
|
||||
size_t MSModelCalcWorkspaceSize(MSModelHandle model) {
|
||||
MS_LOG(ERROR) << "Unsupported Feature.";
|
||||
return 0;
|
||||
}
|
||||
|
||||
MSStatus MSModelBuild(MSModelHandle model, const void *model_data, size_t data_size, MSModelType model_type,
|
||||
const MSContextHandle model_context) {
|
||||
if (model == nullptr || model_data == nullptr || model_context == nullptr) {
|
||||
|
|
|
@ -199,12 +199,13 @@ function Run_cortex_m_codegen() {
|
|||
out_data=`cat ${models_path}/input_output/output/${model_name}.ms.out.txt`
|
||||
sed -i "s/float calib_input0_data\[NET_INPUT0_SIZE\] = {};/float calib_input0_data\[NET_INPUT0_SIZE\] = {${in_data}};/g" benchmark/data.c
|
||||
sed -i "s/float calib_output0_data\[NET_OUTPUT0_SIZE\] = {};/float calib_output0_data\[NET_OUTPUT0_SIZE\] = {${out_data}};/g" benchmark/data.c
|
||||
sed -i "s/VERSION_STR=1.8.0/VERSION_STR=${version}/g" build.sh
|
||||
sed -i "s/VERSION_STR=.*/VERSION_STR=${version}/g" build.sh
|
||||
bash build.sh || exit 1
|
||||
cp -r ${output_file}/mindspore-lite-${version}-none-cortex-m7 ${output_file}/build/
|
||||
cd ${stm_demo_file} || exit 1
|
||||
[ -n "${stm_demo_file}" ] && rm -rf ${stm_demo_file}/build
|
||||
sed -i "s/LITE_PACK =/LITE_PACK = mindspore-lite-${version}-none-cortex-m7/g" Makefile
|
||||
sed -i "s/ if (benchmark() == 0) {/ static char work_space\[300000\];\n if (benchmark(work_space, 300000) == 0) {/g" Core/Src/main.c
|
||||
make >> "$4" || return 1
|
||||
|
||||
continue
|
||||
|
|
|
@ -22,22 +22,23 @@
|
|||
#include "coder/log.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "nnacl/op_base.h"
|
||||
#include "include/c_api/model_c.h"
|
||||
|
||||
namespace mindspore::lite::micro {
|
||||
const char model_runtime_init_source[] = R"RAW(
|
||||
const char micro_model_define_source[] = R"RAW(
|
||||
typedef struct {
|
||||
void *runtime_buffer;
|
||||
bool train_mode; // true: train mode, false: eval mode
|
||||
MSTensorHandleArray inputs;
|
||||
MSTensorHandleArray outputs;
|
||||
} MicroModel;
|
||||
)RAW";
|
||||
const char model_runtime_malloc_source[] = R"RAW(
|
||||
MSModelHandle MSModelCreate() {
|
||||
MicroModel *micro_model = (MicroModel *)malloc(sizeof(MicroModel));
|
||||
if (micro_model == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
)RAW";
|
||||
const char model_runtime_malloc_source[] = R"RAW(
|
||||
int buffer_size = GetBufferSize();
|
||||
void *runtime_buffer = malloc(buffer_size);
|
||||
if (runtime_buffer == NULL) {
|
||||
|
@ -50,63 +51,202 @@ const char model_runtime_malloc_source[] = R"RAW(
|
|||
}
|
||||
|
||||
)RAW";
|
||||
const char handle_array_destroy[] = R"RAW(
|
||||
void MSTensorHandleArrayDestroy(MSTensorHandleArray inputs) {
|
||||
if (inputs.handle_list == NULL) {
|
||||
return;
|
||||
}
|
||||
for (size_t i = 0; i < inputs.handle_num; i++) {
|
||||
MicroTensor *micro_tensor = inputs.handle_list[i];
|
||||
if (!micro_tensor) {
|
||||
continue;
|
||||
}
|
||||
if (micro_tensor->data) {
|
||||
free(micro_tensor->data);
|
||||
micro_tensor->data = NULL;
|
||||
}
|
||||
if (micro_tensor->shape) {
|
||||
free(micro_tensor->shape);
|
||||
micro_tensor->shape = NULL;
|
||||
}
|
||||
free(micro_tensor);
|
||||
micro_tensor = NULL;
|
||||
}
|
||||
free(inputs.handle_list);
|
||||
inputs.handle_list = NULL;
|
||||
}
|
||||
|
||||
)RAW";
|
||||
const char cortex_set_workspace[] = R"RAW(
|
||||
MicroModel *micro_model = (MicroModel *)model;
|
||||
if (micro_model == NULL) {
|
||||
return;
|
||||
}
|
||||
if (workspace_size < MSModelCalcWorkspaceSize(model)) {
|
||||
return;
|
||||
}
|
||||
if (micro_model->inputs.handle_num != GRAPH_INPUTS_SIZE) {
|
||||
return;
|
||||
}
|
||||
if (micro_model->outputs.handle_num != GRAPH_OUTPUTS_SIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
micro_model->runtime_buffer = workspace;
|
||||
int buffer_size = GetBufferSize();
|
||||
char* buf = workspace;
|
||||
SetBuffer(buf);
|
||||
|
||||
)RAW";
|
||||
void CodeMSModelCalcWorkspaceSize(std::ofstream &ofs, const std::unique_ptr<CoderContext> &ctx,
|
||||
const Configurator &config) {
|
||||
if (config.target() == kCortex_M) {
|
||||
ofs << "size_t MSModelCalcWorkspaceSize(MSModelHandle model) {\n";
|
||||
ofs << " size_t shape_size=0;\n";
|
||||
std::vector<Tensor *> inputs = ctx->graph_inputs();
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
ofs << " shape_size += " << inputs[i]->shape().size() << " * sizeof(int64_t);\n";
|
||||
}
|
||||
std::vector<Tensor *> outputs = ctx->graph_outputs();
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
ofs << " shape_size += " << outputs[i]->shape().size() << " * sizeof(int64_t);\n";
|
||||
}
|
||||
ofs << " return GetBufferSize() + WEIGHT_BUF_SIZE + shape_size + "
|
||||
<< "(sizeof(MicroTensor) + sizeof(MicroTensor *)) * "
|
||||
<< (ctx->graph_inputs().size() + ctx->graph_outputs().size()) << ";\n}\n";
|
||||
} else {
|
||||
ofs << "size_t MSModelCalcWorkspaceSize(MSModelHandle model) {\n return 0;\n}\n";
|
||||
}
|
||||
ofs << "\n";
|
||||
}
|
||||
|
||||
void CodeMSModelSetWorkspace(std::ofstream &ofs, const std::unique_ptr<CoderContext> &ctx, const Configurator &config) {
|
||||
ofs << "void MSModelSetWorkspace(MSModelHandle model, void *workspace, size_t workspace_size) {\n";
|
||||
if (config.target() == kCortex_M) {
|
||||
ofs << cortex_set_workspace;
|
||||
ofs << " " << ctx->weight_name() << " = (uint8_t *)&buf[buffer_size];\n";
|
||||
ofs << R"RAW(
|
||||
buffer_size += WEIGHT_BUF_SIZE;
|
||||
|
||||
micro_model->inputs.handle_list = (MSTensorHandle *)&buf[buffer_size];
|
||||
buffer_size += GRAPH_INPUTS_SIZE * sizeof(MicroTensor *);
|
||||
MicroTensor **input_tensors = (MicroTensor **)micro_model->inputs.handle_list;
|
||||
|
||||
micro_model->outputs.handle_list = (MSTensorHandle *)&buf[buffer_size];
|
||||
buffer_size += GRAPH_OUTPUTS_SIZE * sizeof(MicroTensor *);
|
||||
MicroTensor **output_tensors = (MicroTensor **)micro_model->outputs.handle_list;
|
||||
)RAW";
|
||||
ofs << " int i;\n"
|
||||
<< " for (i = 0; i < GRAPH_INPUTS_SIZE; i++) {\n";
|
||||
std::vector<Tensor *> inputs = ctx->graph_inputs();
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
ofs << " input_tensors[i] = (MicroTensor *)&buf[buffer_size];\n"
|
||||
<< " buffer_size += sizeof(MicroTensor);\n";
|
||||
ofs << " input_tensors[i]->shape = (int64_t *)&buf[buffer_size];\n"
|
||||
<< " buffer_size += " << inputs[i]->shape().size() * sizeof(int64_t) << ";\n";
|
||||
}
|
||||
ofs << " }\n";
|
||||
|
||||
ofs << " for (i = 0; i < GRAPH_OUTPUTS_SIZE; i++) {\n";
|
||||
std::vector<Tensor *> outputs = ctx->graph_outputs();
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
ofs << " output_tensors[i] = (MicroTensor *)&buf[buffer_size];\n"
|
||||
<< " buffer_size += sizeof(MicroTensor);\n";
|
||||
ofs << " output_tensors[i]->shape = (int64_t *)&buf[buffer_size];\n"
|
||||
<< " buffer_size += " << outputs[i]->shape().size() * sizeof(int64_t) << ";\n";
|
||||
}
|
||||
ofs << " }\n";
|
||||
|
||||
auto array_tostring = [&ofs](Tensor *tensor, const std::string &prefix, size_t index) {
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->type = " << EnumNameMSDataType(tensor->data_type())
|
||||
<< ";\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->format = kMSFormatNHWC;\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->ndim = " << tensor->shape().size() << ";\n";
|
||||
size_t shape_size = tensor->shape().size();
|
||||
for (size_t i = 0; i < shape_size; i++) {
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->shape[" << i << "]= " << tensor->shape()[i]
|
||||
<< ";\n";
|
||||
}
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->name = \"" << tensor->tensor_name() << "\";\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->data = NULL;\n";
|
||||
};
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
array_tostring(inputs[i], "input", i);
|
||||
}
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
array_tostring(outputs[i], "output", i);
|
||||
}
|
||||
}
|
||||
ofs << "}\n\n";
|
||||
}
|
||||
|
||||
void CodeMSModelCreate(std::ofstream &ofs, const std::unique_ptr<CoderContext> &ctx, const Configurator &config) {
|
||||
ofs << model_runtime_init_source;
|
||||
ofs << micro_model_define_source;
|
||||
if (config.target() != kCortex_M) {
|
||||
ofs << model_runtime_malloc_source;
|
||||
} else {
|
||||
ofs << " micro_model->runtime_buffer = " << ctx->buffer_name() << ";\n";
|
||||
}
|
||||
if (config.code_mode() == CodeMode::Inference) {
|
||||
ofs << " micro_model->train_mode = false;\n";
|
||||
} else if (config.code_mode() == CodeMode::Train) {
|
||||
ofs << " micro_model->train_mode = true;\n";
|
||||
}
|
||||
auto array_tostring = [&ofs](Tensor *tensor, const std::string &prefix, size_t index) {
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "] = malloc(sizeof(MicroTensor));\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->type = " << EnumNameMSDataType(tensor->data_type())
|
||||
<< ";\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->format = kMSFormatNHWC;\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->ndim = " << tensor->shape().size() << ";\n";
|
||||
size_t shape_size = tensor->shape().size();
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->shape = "
|
||||
<< "malloc(" << shape_size << " * sizeof(int64_t));\n";
|
||||
for (size_t i = 0; i < shape_size; i++) {
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->shape[" << i << "]= " << tensor->shape()[i]
|
||||
<< ";\n";
|
||||
if (config.code_mode() == CodeMode::Inference) {
|
||||
ofs << " micro_model->train_mode = false;\n";
|
||||
} else if (config.code_mode() == CodeMode::Train) {
|
||||
ofs << " micro_model->train_mode = true;\n";
|
||||
}
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->name = \"" << tensor->tensor_name() << "\";\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->data = NULL;\n";
|
||||
};
|
||||
std::vector<Tensor *> inputs = ctx->graph_inputs();
|
||||
std::vector<Tensor *> outputs = ctx->graph_outputs();
|
||||
if (config.code_mode() == CodeMode::Inference) {
|
||||
outputs = ctx->graph_outputs();
|
||||
} else if (config.code_mode() == CodeMode::Train) {
|
||||
outputs = ctx->graph_train_outputs();
|
||||
auto array_tostring = [&ofs](Tensor *tensor, const std::string &prefix, size_t index) {
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "] = malloc(sizeof(MicroTensor));\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->type = " << EnumNameMSDataType(tensor->data_type())
|
||||
<< ";\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->format = kMSFormatNHWC;\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->ndim = " << tensor->shape().size() << ";\n";
|
||||
size_t shape_size = tensor->shape().size();
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->shape = "
|
||||
<< "malloc(" << shape_size << " * sizeof(int64_t));\n";
|
||||
for (size_t i = 0; i < shape_size; i++) {
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->shape[" << i << "]= " << tensor->shape()[i]
|
||||
<< ";\n";
|
||||
}
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->name = \"" << tensor->tensor_name() << "\";\n";
|
||||
ofs << kAlignedString << prefix << "_tensors[" << index << "]->data = NULL;\n";
|
||||
};
|
||||
std::vector<Tensor *> inputs = ctx->graph_inputs();
|
||||
std::vector<Tensor *> outputs = ctx->graph_outputs();
|
||||
if (config.code_mode() == CodeMode::Inference) {
|
||||
outputs = ctx->graph_outputs();
|
||||
} else if (config.code_mode() == CodeMode::Train) {
|
||||
outputs = ctx->graph_train_outputs();
|
||||
}
|
||||
size_t inputs_size = inputs.size();
|
||||
ofs << " MSTensorHandleArray model_inputs;\n";
|
||||
ofs << " model_inputs.handle_num = " << inputs_size << ";\n";
|
||||
ofs << " MicroTensor **input_tensors = malloc(" << inputs_size << " * sizeof(MicroTensor *));\n";
|
||||
ofs << " model_inputs.handle_list = (MSTensorHandle *)(input_tensors);\n";
|
||||
ofs << " micro_model->inputs = model_inputs;\n";
|
||||
for (size_t i = 0; i < inputs_size; ++i) {
|
||||
Tensor *input = inputs[i];
|
||||
array_tostring(input, "input", i);
|
||||
}
|
||||
size_t outputs_size = outputs.size();
|
||||
ofs << " MSTensorHandleArray model_outputs;\n";
|
||||
ofs << " model_outputs.handle_num = " << outputs_size << ";\n";
|
||||
ofs << " MicroTensor **output_tensors = malloc(" << outputs_size << " * sizeof(MicroTensor *));\n";
|
||||
ofs << " model_outputs.handle_list = (MSTensorHandle *)(output_tensors);\n";
|
||||
ofs << " micro_model->outputs = model_outputs;\n";
|
||||
for (size_t i = 0; i < outputs_size; ++i) {
|
||||
Tensor *output = outputs[i];
|
||||
array_tostring(output, "output", i);
|
||||
}
|
||||
ofs << " return (MSModelHandle)micro_model;\n";
|
||||
} else {
|
||||
ofs << "#define GRAPH_INPUTS_SIZE " << ctx->graph_inputs().size() << "\n";
|
||||
ofs << "#define GRAPH_OUTPUTS_SIZE " << ctx->graph_outputs().size() << "\n";
|
||||
ofs << "#define WEIGHT_BUF_SIZE " << ctx->weight_buffer_size() << "\n";
|
||||
ofs << "MSModelHandle MSModelCreate() {\n";
|
||||
ofs << " static MicroModel model;\n";
|
||||
ofs << " model.runtime_buffer = NULL;\n";
|
||||
ofs << " model.inputs.handle_num = GRAPH_INPUTS_SIZE;\n";
|
||||
ofs << " model.inputs.handle_list = NULL;\n";
|
||||
ofs << " model.outputs.handle_num = GRAPH_OUTPUTS_SIZE;\n";
|
||||
ofs << " model.outputs.handle_list = NULL;\n";
|
||||
ofs << " model.train_mode = false;\n";
|
||||
ofs << " return (MSModelHandle)&model;\n";
|
||||
}
|
||||
size_t inputs_size = inputs.size();
|
||||
ofs << " MSTensorHandleArray model_inputs;\n";
|
||||
ofs << " model_inputs.handle_num = " << inputs_size << ";\n";
|
||||
ofs << " MicroTensor **input_tensors = malloc(" << inputs_size << " * sizeof(MicroTensor *));\n";
|
||||
ofs << " model_inputs.handle_list = (MSTensorHandle *)(input_tensors);\n";
|
||||
ofs << " micro_model->inputs = model_inputs;\n";
|
||||
for (size_t i = 0; i < inputs_size; ++i) {
|
||||
Tensor *input = inputs[i];
|
||||
array_tostring(input, "input", i);
|
||||
}
|
||||
size_t outputs_size = outputs.size();
|
||||
ofs << " MSTensorHandleArray model_outputs;\n";
|
||||
ofs << " model_outputs.handle_num = " << outputs_size << ";\n";
|
||||
ofs << " MicroTensor **output_tensors = malloc(" << outputs_size << " * sizeof(MicroTensor *));\n";
|
||||
ofs << " model_outputs.handle_list = (MSTensorHandle *)(output_tensors);\n";
|
||||
ofs << " micro_model->outputs = model_outputs;\n";
|
||||
for (size_t i = 0; i < outputs_size; ++i) {
|
||||
Tensor *output = outputs[i];
|
||||
array_tostring(output, "output", i);
|
||||
}
|
||||
ofs << " return (MSModelHandle)micro_model;\n";
|
||||
ofs << "}\n\n";
|
||||
}
|
||||
|
||||
|
@ -116,6 +256,9 @@ void CodeMSModelBuild(std::ofstream &ofs, const Configurator *config) {
|
|||
" const MSContextHandle model_context) {\n"
|
||||
" if (model_type != kMSModelTypeMindIR) {\n"
|
||||
" return kMSStatusLiteNotSupport;\n"
|
||||
" }\n"
|
||||
" if (((MicroModel *)model)->runtime_buffer == NULL) {\n"
|
||||
" return kMSStatusLiteMemoryFailed;\n"
|
||||
" }\n";
|
||||
ofs << " int ret = RET_OK;\n";
|
||||
if (config->target() != kCortex_M) {
|
||||
|
@ -139,23 +282,26 @@ void CodeMSModelBuild(std::ofstream &ofs, const Configurator *config) {
|
|||
}
|
||||
|
||||
void CodeMSModelDestory(std::ofstream &ofs, const Configurator *config) {
|
||||
ofs << "void MSModelDestroy(MSModelHandle *model) {\n";
|
||||
ofs << " if (*model) {\n"
|
||||
" MicroModel *micro_model = (MicroModel *)*model;\n";
|
||||
if (config->target() != kCortex_M) {
|
||||
ofs << handle_array_destroy;
|
||||
}
|
||||
ofs << "void MSModelDestroy(MSModelHandle *model) {\n";
|
||||
if (config->target() != kCortex_M) {
|
||||
ofs << " if (*model) {\n"
|
||||
" MicroModel *micro_model = (MicroModel *)*model;\n";
|
||||
ofs << " if (micro_model->runtime_buffer) {\n"
|
||||
" free(micro_model->runtime_buffer);\n"
|
||||
" micro_model->runtime_buffer = NULL;\n"
|
||||
" }\n";
|
||||
}
|
||||
ofs << " MSTensorHandleArrayDestroy(micro_model->inputs);\n"
|
||||
" MSTensorHandleArrayDestroy(micro_model->outputs);\n"
|
||||
" free(*model);\n"
|
||||
" *model = NULL;\n"
|
||||
" }\n";
|
||||
ofs << " MSTensorHandleArrayDestroy(micro_model->inputs);\n"
|
||||
" MSTensorHandleArrayDestroy(micro_model->outputs);\n"
|
||||
" free(*model);\n"
|
||||
" *model = NULL;\n"
|
||||
" }\n";
|
||||
|
||||
if (config->support_parallel()) {
|
||||
ofs << " ClearThreadPool();\n";
|
||||
if (config->support_parallel()) {
|
||||
ofs << " ClearThreadPool();\n";
|
||||
}
|
||||
}
|
||||
ofs << "}\n";
|
||||
}
|
||||
|
|
|
@ -27,6 +27,9 @@
|
|||
#include "tools/converter/micro/coder/config.h"
|
||||
|
||||
namespace mindspore::lite::micro {
|
||||
void CodeMSModelCalcWorkspaceSize(std::ofstream &ofs, const std::unique_ptr<CoderContext> &ctx,
|
||||
const Configurator &config);
|
||||
void CodeMSModelSetWorkspace(std::ofstream &ofs, const std::unique_ptr<CoderContext> &ctx, const Configurator &config);
|
||||
void CodeMSModelCreate(std::ofstream &ofs, const std::unique_ptr<CoderContext> &ctx, const Configurator &config);
|
||||
void CodeMSModelBuild(std::ofstream &ofs, const Configurator *config);
|
||||
void CodeMSModelDestory(std::ofstream &ofs, const Configurator *config);
|
||||
|
|
|
@ -291,6 +291,7 @@ const char benchmark_source_cortex[] = R"RAW(/**
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "benchmark.h"
|
||||
#include "calib_output.h"
|
||||
#include "load_input.h"
|
||||
#include "data.h"
|
||||
|
@ -351,7 +352,7 @@ void PrintTensorHandle(MSTensorHandle tensor) {
|
|||
}
|
||||
}
|
||||
|
||||
int benchmark() {
|
||||
int benchmark(char *work_space, unsigned int work_space_size) {
|
||||
int ret;
|
||||
printf("========run benchmark======\n");
|
||||
printf("========Model build========\n");
|
||||
|
@ -360,6 +361,12 @@ int benchmark() {
|
|||
printf("MSModelCreate failed.\n");
|
||||
return kMSStatusLiteNullptr;
|
||||
}
|
||||
size_t workspace_size = MSModelCalcWorkspaceSize(model_handle);
|
||||
if (workspace_size > work_space_size) {
|
||||
printf("This Model inference requires %ul bytes of memory.\n", workspace_size);
|
||||
return kMSStatusLiteError;
|
||||
}
|
||||
MSModelSetWorkspace(model_handle, work_space, work_space_size);
|
||||
ret = MSModelBuild(model_handle, NULL, 0, kMSModelTypeMindIR, NULL);
|
||||
if (ret != kMSStatusSuccess) {
|
||||
printf("MSModelBuildFromFile failed, ret : %d.\n", ret);
|
||||
|
@ -421,6 +428,7 @@ int benchmark() {
|
|||
MSModelDestroy(&model_handle);
|
||||
return kMSStatusSuccess;
|
||||
}
|
||||
|
||||
)RAW";
|
||||
|
||||
const char benchmark_h_cortex[] = R"RAW(/**
|
||||
|
@ -444,7 +452,7 @@ const char benchmark_h_cortex[] = R"RAW(/**
|
|||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
int benchmark();
|
||||
int benchmark(char *work_space, unsigned int work_space_size);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -59,9 +59,10 @@ if("${CMAKE_BUILD_TYPE}" STREQUAL "Debug")
|
|||
else()
|
||||
message(STATUS "build benchmark release version")
|
||||
set(CMAKE_C_FLAGS "-fPIC -fPIE -D_FORTIFY_SOURCE=2 -O3 -Wall -Werror -fstack-protector-strong -Wno-attributes \
|
||||
-Wno-deprecated-declarations -Wno-missing-braces ${CMAKE_C_FLAGS}")
|
||||
-Wno-deprecated-declarations -Wno-incompatible-pointer-types -Wno-missing-braces ${CMAKE_C_FLAGS}")
|
||||
set(CMAKE_CXX_FLAGS "-fPIC -fPIE -D_FORTIFY_SOURCE=2 -O3 -Wall -Werror -fstack-protector-strong -Wno-attributes \
|
||||
-Wno-deprecated-declarations -Wno-missing-braces -Wno-overloaded-virtual ${CMAKE_CXX_FLAGS}")
|
||||
-Wno-deprecated-declarations -Wno-incompatible-pointer-types -Wno-missing-braces -Wno-overloaded-virtual \
|
||||
${CMAKE_CXX_FLAGS}")
|
||||
string(REPLACE "-g" "" CMAKE_C_FLAGS "${CMAKE_C_FLAGS}")
|
||||
string(REPLACE "-g" "" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
|
||||
endif()
|
||||
|
|
|
@ -293,16 +293,17 @@ set -e
|
|||
BASEPATH=$(cd "$(dirname $0)"; pwd)
|
||||
mkdir -p build
|
||||
|
||||
VERSION_STR=1.8.0
|
||||
VERSION_STR=1.8.1
|
||||
MINDSPORE_FILE_NAME="mindspore-lite-${VERSION_STR}-none-cortex-m7"
|
||||
MINDSPORE_FILE="${MINDSPORE_FILE_NAME}.tar.gz"
|
||||
MINDSPORE_LITE_DOWNLOAD_URL=\
|
||||
"https://ms-release.obs.cn-north-4.myhuaweicloud.com/${VERSION_STR}/MindSpore/lite/release/cortex-m/${MINDSPORE_FILE}"
|
||||
"https://ms-release.obs.cn-north-4.myhuaweicloud.com/${VERSION_STR}/MindSpore/lite/none_cortex-m/${MINDSPORE_FILE}"
|
||||
if [ ! -e ${BASEPATH}/${MINDSPORE_FILE} ]; then
|
||||
wget -c -O ${BASEPATH}/${MINDSPORE_FILE} --no-check-certificate ${MINDSPORE_LITE_DOWNLOAD_URL}+
|
||||
wget -c -O ${BASEPATH}/${MINDSPORE_FILE} --no-check-certificate ${MINDSPORE_LITE_DOWNLOAD_URL}
|
||||
fi
|
||||
if [ ! -e ${BASEPATH}/${MINDSPORE_FILE_NAME} ]; then
|
||||
tar xzf ${BASEPATH}/${MINDSPORE_FILE} -C ${BASEPATH}/
|
||||
fi
|
||||
tar xzf ${BASEPATH}/${MINDSPORE_FILE} -C ${BASEPATH}/
|
||||
|
||||
cd build
|
||||
cmake -DPKG_PATH=../${MINDSPORE_FILE_NAME} -DCMAKE_TOOLCHAIN_FILE=../cortex-m7.toolchain.cmake ..
|
||||
make
|
||||
|
|
|
@ -38,6 +38,7 @@ const char context_header[] = R"RAW(
|
|||
#define MINDSPORE_LITE_MICRO_LIBRARY_SOURCE_CONTEXT_H_
|
||||
|
||||
#include <stdbool.h>
|
||||
#include "c_api/context_c.h"
|
||||
|
||||
typedef struct MicroContext {
|
||||
char* vendor_name_;
|
||||
|
@ -69,29 +70,14 @@ const char context_source_cortex[] = R"RAW(
|
|||
*/
|
||||
|
||||
#include "context.h"
|
||||
#include "c_api/context_c.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
MSContextHandle MSContextCreate() {
|
||||
MicroContext *micro_context = (MicroContext *)malloc(sizeof(MicroContext));
|
||||
if (micro_context == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
micro_context->enable_parallel_ = false;
|
||||
micro_context->thread_num_ = 1;
|
||||
micro_context->affinity_core_list_ = NULL;
|
||||
micro_context->core_num = 0;
|
||||
micro_context->affinity_mode = 0;
|
||||
return micro_context;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void MSContextDestroy(MSContextHandle *context) {
|
||||
MicroContext *micro_context = (MicroContext *)(*context);
|
||||
if (micro_context) {
|
||||
free(micro_context);
|
||||
micro_context = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void MSContextSetThreadNum(MSContextHandle context, int32_t thread_num) {
|
||||
|
@ -127,7 +113,6 @@ const char context_source_no_parallel[] = R"RAW(
|
|||
*/
|
||||
|
||||
#include "context.h"
|
||||
#include "c_api/context_c.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
|
@ -185,10 +170,9 @@ const char context_source[] = R"RAW(
|
|||
*/
|
||||
|
||||
#include "context.h"
|
||||
#include "c_api/context_c.h"
|
||||
#include "wrapper/thread/micro_core_affinity.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "wrapper/thread/micro_core_affinity.h"
|
||||
|
||||
#define MAX_THREAD_NUM 4
|
||||
|
||||
|
|
|
@ -18,30 +18,6 @@
|
|||
|
||||
namespace mindspore::lite::micro {
|
||||
const char model_runtime_other_source[] = R"RAW(
|
||||
void MSTensorHandleArrayDestroy(MSTensorHandleArray inputs) {
|
||||
if (inputs.handle_list == NULL) {
|
||||
return;
|
||||
}
|
||||
for (size_t i = 0; i < inputs.handle_num; i++) {
|
||||
MicroTensor *micro_tensor = inputs.handle_list[i];
|
||||
if (!micro_tensor) {
|
||||
continue;
|
||||
}
|
||||
if (micro_tensor->data) {
|
||||
free(micro_tensor->data);
|
||||
micro_tensor->data = NULL;
|
||||
}
|
||||
if (micro_tensor->shape) {
|
||||
free(micro_tensor->shape);
|
||||
micro_tensor->shape = NULL;
|
||||
}
|
||||
free(micro_tensor);
|
||||
micro_tensor = NULL;
|
||||
}
|
||||
free(inputs.handle_list);
|
||||
inputs.handle_list = NULL;
|
||||
}
|
||||
|
||||
MSTensorHandleArray MSModelGetInputs(const MSModelHandle model) {
|
||||
MicroModel *micro_model = (MicroModel *)model;
|
||||
return micro_model->inputs;
|
||||
|
|
|
@ -172,11 +172,13 @@ void CodeWeightInitFunc(std::ofstream &ofs, const std::unique_ptr<CoderContext>
|
|||
ofs << " }\n";
|
||||
} else {
|
||||
ofs << "int Init(void *weight_buffer, int weight_size) {\n";
|
||||
ofs << " if (" << ctx->weight_name() << "== NULL) {\n";
|
||||
ofs << " return RET_ERROR;\n }\n";
|
||||
ofs << " const size_t w_size = " << ctx->weight_buffer_size() << ";\n";
|
||||
}
|
||||
ofs << " size_t " << ctx->weight_offset_name() << " = 0;\n";
|
||||
for (const auto &block : ctx->init_contents()) {
|
||||
ofs << "{\n" << block << "}\n";
|
||||
ofs << "\n{\n" << block << "}\n";
|
||||
}
|
||||
ofs << " if (" << ctx->weight_size_name() << " < " << ctx->weight_offset_name()
|
||||
<< ") {\n return RET_ERROR;\n }\n";
|
||||
|
|
|
@ -214,11 +214,14 @@ int Generator::CodeMSModelImplement() {
|
|||
ofs << "#include \"context.h\"\n";
|
||||
ofs << "#include \"c_api/model_c.h\"\n";
|
||||
ofs << "#include \"net.h\"\n";
|
||||
ofs << "#include \"weight.h\"\n\n";
|
||||
if (config_->support_parallel()) {
|
||||
ofs << "#include \"" << kThreadWrapper << "\"\n";
|
||||
}
|
||||
ofs << "#include \"weight.h\"\n\n";
|
||||
|
||||
CodeMSModelCreate(ofs, ctx_, *config_);
|
||||
CodeMSModelCalcWorkspaceSize(ofs, ctx_, *config_);
|
||||
CodeMSModelSetWorkspace(ofs, ctx_, *config_);
|
||||
CodeMSModelBuild(ofs, config_);
|
||||
ofs << model_runtime_other_source;
|
||||
if (config_->code_mode() == CodeMode::Train) {
|
||||
|
@ -264,9 +267,8 @@ int Generator::CodeWeightFile() {
|
|||
return RET_ERROR;
|
||||
}
|
||||
cofs << "int __errno; \n";
|
||||
cofs << "unsigned char g_buf[" << ctx_->total_buffer_size() + ctx_->weight_buffer_size() << "]; \n";
|
||||
cofs << "unsigned char * " << ctx_->buffer_name() << " = &g_buf[0]; \n";
|
||||
cofs << "unsigned char * " << ctx_->weight_name() << " = &g_buf[" << ctx_->total_buffer_size() << "]; \n";
|
||||
cofs << "unsigned char * " << ctx_->buffer_name() << " = NULL; \n";
|
||||
cofs << "unsigned char * " << ctx_->weight_name() << " = NULL; \n";
|
||||
CodeModelParamsData(cofs, ctx_->saved_weights());
|
||||
}
|
||||
CodeModelParamsForNet(hofs, cofs, ctx_, *config_);
|
||||
|
|
|
@ -48,22 +48,15 @@ std::string EnumNameTarget(Target target);
|
|||
*/
|
||||
template <typename T>
|
||||
std::string GetVariableTypeName() {
|
||||
std::map<std::type_index, std::string> types_name = {{std::type_index(typeid(int)), "int"},
|
||||
{std::type_index(typeid(int32_t)), "int32_t"},
|
||||
{std::type_index(typeid(int16_t)), "int16_t"},
|
||||
{std::type_index(typeid(int8_t)), "int8_t"},
|
||||
{std::type_index(typeid(uint8_t)), "uint8_t"},
|
||||
{std::type_index(typeid(float)), "float"},
|
||||
{std::type_index(typeid(double)), "double"},
|
||||
{std::type_index(typeid(::QuantArg)), "QuantArg"},
|
||||
{std::type_index(typeid(void *)), "void *"},
|
||||
{std::type_index(typeid(std::string)), "float *"},
|
||||
{std::type_index(typeid(int *)), "int *"},
|
||||
{std::type_index(typeid(int32_t *)), "int32_t *"},
|
||||
{std::type_index(typeid(int16_t *)), "int16_t *"},
|
||||
{std::type_index(typeid(int8_t *)), "int8_t *"},
|
||||
{std::type_index(typeid(uint8_t *)), "uint8_t *"},
|
||||
{std::type_index(typeid(float *)), "float *"}};
|
||||
std::map<std::type_index, std::string> types_name = {
|
||||
{std::type_index(typeid(int)), "int32_t"}, {std::type_index(typeid(int32_t)), "int32_t"},
|
||||
{std::type_index(typeid(int16_t)), "int16_t"}, {std::type_index(typeid(int8_t)), "int8_t"},
|
||||
{std::type_index(typeid(uint8_t)), "uint8_t"}, {std::type_index(typeid(float)), "float"},
|
||||
{std::type_index(typeid(double)), "double"}, {std::type_index(typeid(::QuantArg)), "QuantArg"},
|
||||
{std::type_index(typeid(void *)), "void *"}, {std::type_index(typeid(std::string)), "float *"},
|
||||
{std::type_index(typeid(int *)), "int32_t *"}, {std::type_index(typeid(int32_t *)), "int32_t *"},
|
||||
{std::type_index(typeid(int16_t *)), "int16_t *"}, {std::type_index(typeid(int8_t *)), "int8_t *"},
|
||||
{std::type_index(typeid(uint8_t *)), "uint8_t *"}, {std::type_index(typeid(float *)), "float *"}};
|
||||
auto item = types_name.find(std::type_index(typeid(T)));
|
||||
if (item != types_name.end()) {
|
||||
return item->second;
|
||||
|
|
Loading…
Reference in New Issue