!46075 fix docs format issues

Merge pull request !46075 from luojianing/code_docs_master
This commit is contained in:
i-robot 2022-11-26 08:07:54 +00:00 committed by Gitee
commit ddedbceeed
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
7 changed files with 16 additions and 13 deletions

View File

@ -3610,6 +3610,7 @@ def heaviside(x, values):
Supported Platforms:
``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.array([-1.5, 0., 2.]))
>>> values = Tensor(np.array([0.5]))
@ -4073,8 +4074,8 @@ def addr(x, vec1, vec2, beta=1, alpha=1):
"""
Executes the outer-product of `vec1` and `vec2` and adds it to the matrix `x`.
If `vec1` is a vector of size :vec1:`N` and `vec2` is a vector of size :vec1:`M`, then `x` must be broadcastable
with a matrix of size :vec1:`(N, M)` and `out` will be a matrix of size :vec1:`(N, M)`.
If `vec1` is a vector of size :math:`N` and `vec2` is a vector of size :math:`M`, then `x` must be broadcastable
with a matrix of size :math:`(N, M)` and `out` will be a matrix of size :math:`(N, M)`.
The optional values `beta` and `alpha` are the scale factors on the outer product between `vec1` and `vec2`
and the added matrix `x` respectively. If `beta` is 0, then `x` will be ignored.
@ -4083,20 +4084,20 @@ def addr(x, vec1, vec2, beta=1, alpha=1):
output = β x + α (vec1 vec2)
Args:
x (Tensor): Vector to be added. The shape of the tensor is :vec1:`(N, M)`.
vec1 (Tensor): The first tensor to be multiplied. The shape of the tensor is :vec1:`(N,)`.
vec2 (Tensor): The second tensor to be multiplied. The shape of the tensor is :vec1:`(M,)`.
x (Tensor): Vector to be added. The shape of the tensor is :math:`(N, M)`.
vec1 (Tensor): The first tensor to be multiplied. The shape of the tensor is :math:`(N,)`.
vec2 (Tensor): The second tensor to be multiplied. The shape of the tensor is :math:`(M,)`.
beta (scalar[int, float, bool], optional): Multiplier for `x` (β). The `beta` must be int or
float or bool, Default: 1.
alpha (scalar[int, float, bool], optional): Multiplier for `vec1` `vec2` (α). The `alpha` must
be int or float or bool, Default: 1.
Returns:
Tensor, the shape of the output tensor is :vec1:`(N, M)`, has the same dtype as `x`.
Tensor, the shape of the output tensor is :math:`(N, M)`, has the same dtype as `x`.
Raises:
TypeError: If `x`, `vec1`, `vec2` is not a Tensor.
TypeError: If inputs `x`, `vec1`, 'vec2' are not the same dtype.
TypeError: If inputs `x`, `vec1`, `vec2` are not the same dtype.
ValueError: If `x` is not a 2-D Tensor.
If `vec1`, `vec2` is not a 1-D Tensor.

View File

@ -7457,7 +7457,7 @@ class FillDiagonal(Primitive):
Inputs:
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
The data type must be float32, int32 or int64.
The data type must be float32, int32 or int64.
Outputs:
- **y** (Tensor) - Tensor, has the same shape and data type as the input `x`.

View File

@ -512,7 +512,7 @@ class Assert(PrimitiveWithInfer):
Inputs:
- **condition** (Union[Tensor[bool], bool]) - The condition to be identified.
- **input_data** (Union[tuple[Tensor], list[Tensor]]) - The tensors to be printed out when the condition
is false.
is false.
Raises:
TypeError: If `summarize` is not an int.

View File

@ -1115,7 +1115,7 @@ class CombinedNonMaxSuppression(Primitive):
Raises:
TypeError: If the dtype of `boxes`, `scores` , `iou_threshold` , `score threshold` are not float32.
TypeError: If the dtype of `max_output_size_per_class` and `max_total_size` are not int32.
ValueError: If `boxes`is not 4D.
ValueError: If `boxes` is not 4D.
ValueError: If `max_output_size_per_class`, `max_total_size`, `iou_threshold` and `score threshold` are not 0D.
ValueError: If shape[0] of `boxes` is not same with shape[0] of `scores`.
ValueError: If `scores` is not 3D.

View File

@ -6607,6 +6607,7 @@ class RaggedRange(Primitive):
- if type of the input `starts`, input `limits` and input `deltas`
are float32 or float64, shape of the output `rt_dense_values` is equal to
sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))).
Raises:
TypeError: If any input is not Tensor.
TypeError: If the type of `starts` is not one of the following dtype: int32, int64, float32, float64.

View File

@ -10209,12 +10209,14 @@ class FractionalMaxPoolWithFixedKsize(Primitive):
- **y** (Tensor) - Has the same type as the `input_x`.
Has the shape :math:`(N, C, output\underline{~}shape{H}, output\underline{~}shape{W})`.
- **argmax** (Tensor) -A tensor whose data type must be int64. Has the same shape as the `y`.
Raises:
TypeError: If data type of `input_x` is not one of the following: float16, float32, float64, int32, int64.
TypeError: If data type of `random_samples` is not one of the following: float16, float32, float64.
ValueError: If `ksize` is not a number and `ksize` is not a tuple of length 2.
ValueError: If `output_shape` is not a number and `output_shape` is not a tuple of length 2.
ValueError: If the sum of `ksize`,`output_shape` and -1 is larger than the corresponding dimension of `input_x`.
ValueError: If the sum of `ksize`, `output_shape` and -1 is larger than the corresponding
dimension of `input_x`.
ValueError: If the dimension of `random_samples` is not 3.
ValueError: If the first dimension size of `input_x` and `random_samples` is not equal.
ValueError: If the second dimension size of `input_x` and `random_samples` is not equal.

View File

@ -283,7 +283,7 @@ class LogNormalReverse(Primitive):
Inputs:
- **input** (Tensor) - The tensor to be generated with log-normal distribution.
Must be one of the following types: float16, float32, float64.
Must be one of the following types: float16, float32, float64.
Outputs:
Tensor. A Tensor with the same type and shape of input.
@ -295,7 +295,6 @@ class LogNormalReverse(Primitive):
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.random.randn(3,4),mstype.float64)
>>> mean = 2.0