new add sqrt_grad and rsqrt_grad.

This commit is contained in:
linqingke 2020-09-10 19:50:51 +08:00
parent 32361ae2ed
commit dda3176fca
6 changed files with 370 additions and 0 deletions

View File

@ -0,0 +1,58 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "unary_op_grad_impl.cuh"
template <typename T>
__global__ void SqrtGradKernel(const T *input, const T *dout, T *output, const size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
float input_f = static_cast<float>(input[i]);
float dout_f = static_cast<float>(dout[i]);
float res_vmul = dout_f / (2.0 * input_f);
output[i] = static_cast<T>(res_vmul);
}
return;
}
template <typename T>
__global__ void RsqrtGradKernel(const T *input, const T *dout, T *output, const size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
float input_f = static_cast<float>(input[i]);
float dout_f = static_cast<float>(dout[i]);
float res_vmul = input_f * input_f * input_f;
res_vmul = -0.5 * res_vmul * dout_f;
output[i] = static_cast<T>(res_vmul);
}
return;
}
template <typename T>
void SqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream) {
SqrtGradKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, dout, output, count);
return;
}
template <typename T>
void RsqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream) {
RsqrtGradKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, dout, output, count);
return;
}
template void SqrtGrad<float>(const float *input, const float *dout, float *output, const size_t count,
cudaStream_t cuda_stream);
template void RsqrtGrad<float>(const float *input, const float *dout, float *output, const size_t count,
cudaStream_t cuda_stream);
template void SqrtGrad<half>(const half *input, const half *dout, half *output, const size_t count,
cudaStream_t cuda_stream);
template void RsqrtGrad<half>(const half *input, const half *dout, half *output, const size_t count,
cudaStream_t cuda_stream);

View File

@ -0,0 +1,26 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOP_GRAD_IMPL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOP_GRAD_IMPL_H_
#include "runtime/device/gpu/cuda_common.h"
template <typename T>
void SqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream);
template <typename T>
void RsqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOP_GRAD_IMPL_H_

View File

@ -0,0 +1,38 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/math/unary_op_grad_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(
SqrtGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
UnaryGradOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
SqrtGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
UnaryGradOpGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(
RsqrtGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
UnaryGradOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
RsqrtGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
UnaryGradOpGpuKernel, half)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,142 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_UNARYOP_GRAD_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_UNARYOP_GRAD_GPU_KERNEL_H_
#include <cuda_runtime_api.h>
#include <vector>
#include <string>
#include <map>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/unary_op_grad_impl.cuh"
namespace mindspore {
namespace kernel {
enum UnaryGradOptype { UNARY_OP_SQRT_GRAD = 0, UNARY_OP_RSQRT_GRAD, UNARY_OP_GRAD_INVALID_TYPE = 255 };
static const std::map<std::string, UnaryGradOptype> kUnaryGradOpTypeMap = {{"SqrtGrad", UNARY_OP_SQRT_GRAD},
{"RsqrtGrad", UNARY_OP_RSQRT_GRAD}};
template <typename T>
class UnaryGradOpGpuKernel : public GpuKernel {
public:
UnaryGradOpGpuKernel()
: unary_grad_op_type_(UNARY_OP_GRAD_INVALID_TYPE),
input_size_(sizeof(T)),
dx_size_(sizeof(T)),
output_size_(sizeof(T)),
workspace_size_(0),
is_null_input_(false) {}
~UnaryGradOpGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
VARIABLE_NOT_USED(workspace);
T *input_x_addr = GetDeviceAddress<T>(inputs, 0);
T *input_dx_addr = GetDeviceAddress<T>(inputs, 1);
T *output_y_addr = GetDeviceAddress<T>(outputs, 0);
switch (unary_grad_op_type_) {
case UNARY_OP_SQRT_GRAD: {
SqrtGrad(input_x_addr, input_dx_addr, output_y_addr, inputs[0]->size / sizeof(T),
reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
case UNARY_OP_RSQRT_GRAD: {
RsqrtGrad(input_x_addr, input_dx_addr, output_y_addr, inputs[0]->size / sizeof(T),
reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
default: {
MS_LOG(EXCEPTION) << "Unary grad operation " << unary_grad_op_type_ << " is not supported.";
}
}
return true;
}
bool Init(const CNodePtr &kernel_node) override {
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
auto iter = kUnaryGradOpTypeMap.find(kernel_name);
if (iter == kUnaryGradOpTypeMap.end()) {
MS_LOG(EXCEPTION) << "Unary grad operation " << kernel_name << " is not supported.";
} else {
unary_grad_op_type_ = iter->second;
}
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but unary grad op needs 2 inputs.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but unary grad op needs 1 output.";
return false;
}
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
is_null_input_ = CHECK_NULL_INPUT(input_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "UnaryGradOpGpuKernel input 0 is null";
InitSizeLists();
return true;
}
for (size_t i = 0; i < input_shape.size(); i++) {
input_size_ *= input_shape[i];
}
auto dx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
is_null_input_ = CHECK_NULL_INPUT(dx_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "UnaryGradOpGpuKernel input 1 is null";
InitSizeLists();
return true;
}
for (size_t i = 0; i < dx_shape.size(); i++) {
dx_size_ *= dx_shape[i];
}
if (input_size_ != dx_size_) {
MS_LOG(WARNING) << "UnaryGradOpGpuKernel inputs should be same, but got " << input_size_ << " and " << dx_size_;
InitSizeLists();
return true;
}
output_size_ = input_size_;
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
input_size_list_.push_back(dx_size_);
output_size_list_.push_back(output_size_);
}
private:
UnaryGradOptype unary_grad_op_type_;
size_t input_size_;
size_t dx_size_;
size_t output_size_;
size_t workspace_size_;
bool is_null_input_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_UNARYOP_GRAD_GPU_KERNEL_H_

View File

@ -0,0 +1,53 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _grad_ops as G
class NetRsqrtGrad(nn.Cell):
def __init__(self):
super(NetRsqrtGrad, self).__init__()
self.rsqrt_grad = G.RsqrtGrad()
def construct(self, x, dx):
return self.rsqrt_grad(x, dx)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_rsqrt_grad():
x = Tensor(np.array([[[[-1, 1, 10],
[5.9, 6.1, 6],
[10, 1, -1]]]]).astype(np.float32))
dx = Tensor(np.array([[[[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]]]).astype(np.float32))
expect = np.array([[[[0.5, -0.5, -500,],
[-205.37901, -226.98099, -216],
[-1500, -1.5, 1.5,]]]]).astype(np.float32)
error = np.ones(shape=[3, 3]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
rsqrt_grad = NetRsqrtGrad()
output = rsqrt_grad(x, dx)
diff = output.asnumpy() - expect
assert np.all(np.abs(diff) < error)

View File

@ -0,0 +1,53 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _grad_ops as G
class NetSqrtGrad(nn.Cell):
def __init__(self):
super(NetSqrtGrad, self).__init__()
self.sqrt_grad = G.SqrtGrad()
def construct(self, x, dx):
return self.sqrt_grad(x, dx)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sqrt_grad():
x = Tensor(np.array([[[[-1, 1, 10],
[5.9, 6.1, 6],
[10, 1, -1]]]]).astype(np.float32))
dx = Tensor(np.array([[[[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]]]).astype(np.float32))
expect = np.array([[[[-0.5, 0.5, 0.05,],
[0.16949153, 0.16393442, 0.16666667,],
[0.15, 1.5, -1.5,]]]]).astype(np.float32)
error = np.ones(shape=[3, 3]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sqrt_grad = NetSqrtGrad()
output = sqrt_grad(x, dx)
diff = output.asnumpy() - expect
assert np.all(np.abs(diff) < error)