forked from mindspore-Ecosystem/mindspore
!14088 [MS][LITE][Develop]optimize fp32 prelu
From: @lx0095 Reviewed-by: @zhang_xue_tong Signed-off-by: @zhang_xue_tong
This commit is contained in:
commit
db95ebc79b
|
@ -15,104 +15,130 @@
|
|||
*/
|
||||
#include "nnacl/fp32/prelu_fp32.h"
|
||||
|
||||
void PRelu(float *input, float *output, const PReluParameter *prelu_param_, int plane) {
|
||||
int plane_tile = plane / TILE_NUM * TILE_NUM;
|
||||
int channel_num = prelu_param_->channel_num_;
|
||||
int plane_index = 0;
|
||||
for (; plane_index < plane_tile; plane_index += TILE_NUM) {
|
||||
float *in_plane_ptr = input + plane_index * channel_num;
|
||||
float *out_plane_ptr = output + plane_index * channel_num;
|
||||
int channel_index = 0;
|
||||
#if defined(ENABLE_AVX)
|
||||
MS_FLOAT32X8 zero_value_8 = MS_MOV256_F32(0.0f);
|
||||
MS_FLOAT32X8 one_value_8 = MS_MOV256_F32(1.0f);
|
||||
float *negetive_slope_value_8 = prelu_param_->slope_;
|
||||
int div_channel_c8 = prelu_param_->channel_num_ / C8NUM * C8NUM;
|
||||
for (; channel_index < div_channel_c8; channel_index += C8NUM) {
|
||||
MS_FLOAT32X8 slope_value_8 = MS_LD256_F32(negetive_slope_value_8 + channel_index);
|
||||
LOAD256X8_F32(src, in_plane_ptr + channel_index, channel_num)
|
||||
PRELU_CALCULATE_256X8(dst, src)
|
||||
STORE256X8_F32(out_plane_ptr + channel_index, channel_num, dst)
|
||||
#ifdef ENABLE_ARM64
|
||||
inline void PRelu4x16(const float *in, float *out, float *cur_slope, size_t step) {
|
||||
asm volatile(
|
||||
"mov x10, %[in]\n"
|
||||
"mov x11, %[out]\n"
|
||||
"mov x12, %[cur_slope]\n"
|
||||
"ld1 {v4.4s, v5.4s, v6.4s, v7.4s}, [x12]\n"
|
||||
"ld1 {v0.4s, v1.4s, v2.4s, v3.4s}, [x10], %[step]\n"
|
||||
"fmul v16.4s, v0.4s, v4.4s\n"
|
||||
"fmul v17.4s, v1.4s, v5.4s\n"
|
||||
"fmul v18.4s, v2.4s, v6.4s\n"
|
||||
"fmul v19.4s, v3.4s, v7.4s\n"
|
||||
"fcmgt v20.4s, v0.4s, #0\n"
|
||||
"fcmgt v21.4s, v1.4s, #0\n"
|
||||
"fcmgt v22.4s, v2.4s, #0\n"
|
||||
"fcmgt v23.4s, v3.4s, #0\n"
|
||||
"ld1 {v24.4s, v25.4s, v26.4s, v27.4s}, [x10], %[step]\n"
|
||||
"bif v0.16b, v16.16b, v20.16b\n"
|
||||
"bif v1.16b, v17.16b, v21.16b\n"
|
||||
"bif v2.16b, v18.16b, v22.16b\n"
|
||||
"bif v3.16b, v19.16b, v23.16b\n"
|
||||
"fmul v8.4s, v24.4s, v4.4s\n"
|
||||
"fmul v9.4s, v25.4s, v5.4s\n"
|
||||
"fmul v10.4s, v26.4s, v6.4s\n"
|
||||
"fmul v11.4s, v27.4s, v7.4s\n"
|
||||
"st1 {v0.4s, v1.4s, v2.4s, v3.4s}, [x11], %[step]\n"
|
||||
"fcmgt v12.4s, v24.4s, #0\n"
|
||||
"fcmgt v13.4s, v25.4s, #0\n"
|
||||
"fcmgt v14.4s, v26.4s, #0\n"
|
||||
"fcmgt v15.4s, v27.4s, #0\n"
|
||||
"ld1 {v0.4s, v1.4s, v2.4s, v3.4s}, [x10], %[step]\n"
|
||||
"bif v24.16b, v8.16b, v12.16b\n"
|
||||
"bif v25.16b, v9.16b, v13.16b\n"
|
||||
"bif v26.16b, v10.16b, v14.16b\n"
|
||||
"bif v27.16b, v11.16b, v15.16b\n"
|
||||
"fmul v16.4s, v0.4s, v4.4s\n"
|
||||
"fmul v17.4s, v1.4s, v5.4s\n"
|
||||
"fmul v18.4s, v2.4s, v6.4s\n"
|
||||
"fmul v19.4s, v3.4s, v7.4s\n"
|
||||
"st1 {v24.4s, v25.4s, v26.4s, v27.4s}, [x11], %[step]\n"
|
||||
"fcmgt v20.4s, v0.4s, #0\n"
|
||||
"fcmgt v21.4s, v1.4s, #0\n"
|
||||
"fcmgt v22.4s, v2.4s, #0\n"
|
||||
"fcmgt v23.4s, v3.4s, #0\n"
|
||||
"ld1 {v24.4s, v25.4s, v26.4s, v27.4s}, [x10]\n"
|
||||
"bif v0.16b, v16.16b, v20.16b\n"
|
||||
"bif v1.16b, v17.16b, v21.16b\n"
|
||||
"bif v2.16b, v18.16b, v22.16b\n"
|
||||
"bif v3.16b, v19.16b, v23.16b\n"
|
||||
"fmul v8.4s, v24.4s, v4.4s\n"
|
||||
"fmul v9.4s, v25.4s, v5.4s\n"
|
||||
"fmul v10.4s, v26.4s, v6.4s\n"
|
||||
"fmul v11.4s, v27.4s, v7.4s\n"
|
||||
"fcmgt v12.4s, v24.4s, #0\n"
|
||||
"fcmgt v13.4s, v25.4s, #0\n"
|
||||
"fcmgt v14.4s, v26.4s, #0\n"
|
||||
"fcmgt v15.4s, v27.4s, #0\n"
|
||||
"st1 {v0.4s, v1.4s, v2.4s, v3.4s}, [x11], %[step]\n"
|
||||
"bif v24.16b, v8.16b, v12.16b\n"
|
||||
"bif v25.16b, v9.16b, v13.16b\n"
|
||||
"bif v26.16b, v10.16b, v14.16b\n"
|
||||
"bif v27.16b, v11.16b, v15.16b\n"
|
||||
"st1 {v24.4s, v25.4s, v26.4s, v27.4s}, [x11]\n"
|
||||
:
|
||||
: [ in ] "r"(in), [ out ] "r"(out), [ cur_slope ] "r"(cur_slope), [ step ] "r"(step)
|
||||
: "x10", "x11", "x12", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13",
|
||||
"v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27");
|
||||
}
|
||||
#endif
|
||||
|
||||
void PRelu(const float *input, float *output, float *slope, int start, int end, int channel) {
|
||||
int i = start;
|
||||
#ifdef ENABLE_ARM64
|
||||
for (; i < end - 3; i += 4) {
|
||||
const float *cur_in = input + i * channel;
|
||||
float *cur_out = output + i * channel;
|
||||
int j = 0;
|
||||
for (; j < channel - 15; j += 16) {
|
||||
const float *in = cur_in + j;
|
||||
float *out = cur_out + j;
|
||||
float *cur_slope = slope + j;
|
||||
size_t step = channel * sizeof(float);
|
||||
PRelu4x16(in, out, cur_slope, step);
|
||||
}
|
||||
for (; j < channel; j++) {
|
||||
cur_out[j] = (cur_in[j] > 0) ? cur_in[j] : (cur_in[j] * slope[j]);
|
||||
cur_out[j + channel] = (cur_in[j + channel] > 0) ? cur_in[j + channel] : cur_in[j + channel] * slope[j];
|
||||
cur_out[j + 2 * channel] =
|
||||
(cur_in[j + 2 * channel] > 0) ? cur_in[j + 2 * channel] : (cur_in[j + 2 * channel] * slope[j]);
|
||||
cur_out[j + 3 * channel] =
|
||||
(cur_in[j + 3 * channel] > 0) ? cur_in[j + 3 * channel] : (cur_in[j + 3 * channel] * slope[j]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for (; i < end; i++) {
|
||||
const float *cur_in = input + i * channel;
|
||||
float *cur_out = output + i * channel;
|
||||
int j = 0;
|
||||
#if defined(ENABLE_ARM)
|
||||
for (; j < channel - 3; j += 4) {
|
||||
MS_FLOAT32X4 in = MS_LDQ_F32(cur_in + j);
|
||||
MS_FLOAT32X4 s = MS_LDQ_F32(slope + j);
|
||||
MS_FLOAT32X4 mul = MS_MULQ_F32(in, s);
|
||||
MS_FLOAT32X4 zero = MS_MOVQ_F32(0.0f);
|
||||
MS_FLOAT32X4 res = MS_BLENDQ_F32(mul, in, MS_CMPGTQ_F32(in, zero));
|
||||
MS_STQ_F32(cur_out + j, res);
|
||||
}
|
||||
#endif
|
||||
// note: First AVX processing, then SSE processing on X86 platform
|
||||
#if defined(ENABLE_ARM) || defined(ENABLE_SSE)
|
||||
MS_FLOAT32X4 zero_value = MS_MOVQ_F32(0.0f);
|
||||
MS_FLOAT32X4 one_value = MS_MOVQ_F32(1.0f);
|
||||
float *negetive_slope_value = prelu_param_->slope_;
|
||||
int div_channel = prelu_param_->channel_num_ / C4NUM * C4NUM;
|
||||
for (; channel_index < div_channel; channel_index += C4NUM) {
|
||||
MS_FLOAT32X4 slope_value = MS_LDQ_F32(negetive_slope_value + channel_index);
|
||||
LOAD128X8_F32(src, in_plane_ptr + channel_index, channel_num)
|
||||
PRELU_CALCULATE_128X8(dst, src)
|
||||
STORE128X8_F32(out_plane_ptr + channel_index, channel_num, dst)
|
||||
}
|
||||
#endif
|
||||
for (; channel_index < channel_num; channel_index++) {
|
||||
float *in_c = in_plane_ptr + channel_index;
|
||||
float *out_c = out_plane_ptr + channel_index;
|
||||
for (int tile_i = 0; tile_i < TILE_NUM; tile_i++) {
|
||||
float *in_tile = in_c + tile_i * channel_num;
|
||||
float *out_tile = out_c + tile_i * channel_num;
|
||||
const float in_data = in_tile[0];
|
||||
out_tile[0] = (in_data < 0 ? in_data : 0) * prelu_param_->slope_[channel_index] + (in_data > 0 ? in_data : 0);
|
||||
for (; j < channel; j++) {
|
||||
if (cur_in[j] > 0) {
|
||||
cur_out[j] = cur_in[j];
|
||||
} else {
|
||||
cur_out[j] = cur_in[j] * slope[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (; plane_index < plane; plane_index++) {
|
||||
float *in_plane_ptr = input + plane_index * channel_num;
|
||||
float *out_plane_ptr = output + plane_index * channel_num;
|
||||
for (int channel_index = 0; channel_index < channel_num; channel_index++) {
|
||||
const float in_data = in_plane_ptr[channel_index];
|
||||
out_plane_ptr[channel_index] =
|
||||
(in_data < 0 ? in_data : 0) * prelu_param_->slope_[channel_index] + (in_data > 0 ? in_data : 0);
|
||||
void PReluShareChannel(const float *input, float *output, float slope, int start, int end) {
|
||||
for (int i = start; i < end; i++) {
|
||||
if (input[i] > 0) {
|
||||
output[i] = input[i];
|
||||
} else {
|
||||
output[i] = input[i] * slope;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PReluShareChannel(float *input, float *output, const PReluParameter *prelu_param_, int task_id) {
|
||||
for (int j = task_id; j < prelu_param_->tile_block_; j += prelu_param_->op_parameter_.thread_num_) {
|
||||
int cal_index;
|
||||
#if defined(ENABLE_ARM64) || defined(ENABLE_AVX)
|
||||
cal_index = j * 64;
|
||||
#else
|
||||
cal_index = j * 32;
|
||||
#endif
|
||||
|
||||
float *input_ptr = input + cal_index;
|
||||
float *output_ptr = input + cal_index;
|
||||
#if defined(ENABLE_AVX)
|
||||
MS_FLOAT32X8 zero_value_8 = MS_MOV256_F32(0);
|
||||
MS_FLOAT32X8 one_value_8 = MS_MOV256_F32(1.0f);
|
||||
MS_FLOAT32X8 slope_value_8 = MS_MOV256_F32(prelu_param_->slope_[0]);
|
||||
LOAD256X8_F32(src, input_ptr, 8)
|
||||
PRELU_CALCULATE_256X8(dst, src)
|
||||
STORE256X8_F32(output_ptr, 8, dst)
|
||||
#elif defined(ENABLE_ARM) || (defined(ENABLE_SSE) && !defined(ENABLE_AVX))
|
||||
MS_FLOAT32X4 zero_value = MS_MOVQ_F32(0);
|
||||
MS_FLOAT32X4 one_value = MS_MOVQ_F32(1.0f);
|
||||
MS_FLOAT32X4 slope_value = MS_MOVQ_F32(prelu_param_->slope_[0]);
|
||||
|
||||
LOAD128X8_F32(src, input_ptr, 4)
|
||||
#ifdef ENABLE_ARM64
|
||||
LOAD128X8_F32(src1, input_ptr + 32, 4)
|
||||
#endif
|
||||
PRELU_CALCULATE_128X8(dst, src)
|
||||
#ifdef ENABLE_ARM64
|
||||
PRELU_CALCULATE_128X8(dst1, src1)
|
||||
#endif
|
||||
STORE128X8_F32(output_ptr, 4, dst)
|
||||
#ifdef ENABLE_ARM64
|
||||
STORE128X8_F32(output_ptr + 32, 4, dst1)
|
||||
#endif
|
||||
|
||||
#else
|
||||
const int cal_per_time = 32;
|
||||
for (int i = 0; i < cal_per_time; ++i) {
|
||||
float data = input_ptr[i];
|
||||
output_ptr[i] = (data < 0 ? data : 0) * prelu_param_->slope_[0] + (data > 0 ? data : 0);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
|
|
@ -22,39 +22,11 @@
|
|||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
void PRelu(float *input, float *output, const PReluParameter *prelu_param_, int task_id);
|
||||
void PRelu(const float *input, float *output, float *slope, int start, int end, int channel);
|
||||
|
||||
void PReluShareChannel(float *input, float *output, const PReluParameter *prelu_param_, int task_id);
|
||||
void PReluShareChannel(const float *input, float *output, float slope, int start, int end);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#define PRELU_CALCULATE_256X8(dst, src) \
|
||||
MS_FLOAT32X8 dst##1 = \
|
||||
MS_MUL256_F32(src##1, MS_BLEND256_F32(slope_value_8, one_value_8, MS_CMP256_F32(src##1, zero_value_8, 30))); \
|
||||
MS_FLOAT32X8 dst##2 = \
|
||||
MS_MUL256_F32(src##2, MS_BLEND256_F32(slope_value_8, one_value_8, MS_CMP256_F32(src##2, zero_value_8, 30))); \
|
||||
MS_FLOAT32X8 dst##3 = \
|
||||
MS_MUL256_F32(src##3, MS_BLEND256_F32(slope_value_8, one_value_8, MS_CMP256_F32(src##3, zero_value_8, 30))); \
|
||||
MS_FLOAT32X8 dst##4 = \
|
||||
MS_MUL256_F32(src##4, MS_BLEND256_F32(slope_value_8, one_value_8, MS_CMP256_F32(src##4, zero_value_8, 30))); \
|
||||
MS_FLOAT32X8 dst##5 = \
|
||||
MS_MUL256_F32(src##5, MS_BLEND256_F32(slope_value_8, one_value_8, MS_CMP256_F32(src##5, zero_value_8, 30))); \
|
||||
MS_FLOAT32X8 dst##6 = \
|
||||
MS_MUL256_F32(src##6, MS_BLEND256_F32(slope_value_8, one_value_8, MS_CMP256_F32(src##6, zero_value_8, 30))); \
|
||||
MS_FLOAT32X8 dst##7 = \
|
||||
MS_MUL256_F32(src##7, MS_BLEND256_F32(slope_value_8, one_value_8, MS_CMP256_F32(src##7, zero_value_8, 30))); \
|
||||
MS_FLOAT32X8 dst##8 = \
|
||||
MS_MUL256_F32(src##8, MS_BLEND256_F32(slope_value_8, one_value_8, MS_CMP256_F32(src##8, zero_value_8, 30)));
|
||||
|
||||
#define PRELU_CALCULATE_128X8(dst, src) \
|
||||
MS_FLOAT32X4 dst##1 = MS_MULQ_F32(src##1, MS_BLENDQ_F32(slope_value, one_value, MS_CMPGTQ_F32(src##1, zero_value))); \
|
||||
MS_FLOAT32X4 dst##2 = MS_MULQ_F32(src##2, MS_BLENDQ_F32(slope_value, one_value, MS_CMPGTQ_F32(src##2, zero_value))); \
|
||||
MS_FLOAT32X4 dst##3 = MS_MULQ_F32(src##3, MS_BLENDQ_F32(slope_value, one_value, MS_CMPGTQ_F32(src##3, zero_value))); \
|
||||
MS_FLOAT32X4 dst##4 = MS_MULQ_F32(src##4, MS_BLENDQ_F32(slope_value, one_value, MS_CMPGTQ_F32(src##4, zero_value))); \
|
||||
MS_FLOAT32X4 dst##5 = MS_MULQ_F32(src##5, MS_BLENDQ_F32(slope_value, one_value, MS_CMPGTQ_F32(src##5, zero_value))); \
|
||||
MS_FLOAT32X4 dst##6 = MS_MULQ_F32(src##6, MS_BLENDQ_F32(slope_value, one_value, MS_CMPGTQ_F32(src##6, zero_value))); \
|
||||
MS_FLOAT32X4 dst##7 = MS_MULQ_F32(src##7, MS_BLENDQ_F32(slope_value, one_value, MS_CMPGTQ_F32(src##7, zero_value))); \
|
||||
MS_FLOAT32X4 dst##8 = MS_MULQ_F32(src##8, MS_BLENDQ_F32(slope_value, one_value, MS_CMPGTQ_F32(src##8, zero_value)));
|
||||
|
||||
#endif // MINDSPORE_LITE_NNACL_FP32_PRELU_H_
|
||||
|
|
|
@ -27,8 +27,7 @@ using mindspore::lite::RET_OK;
|
|||
using mindspore::schema::PrimitiveType_PReLUFusion;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
namespace {
|
||||
int PReluRun(void *cdata, int task_id) {
|
||||
static int PReluRun(void *cdata, int task_id) {
|
||||
auto PRelu = reinterpret_cast<PReluCPUKernel *>(cdata);
|
||||
auto ret = PRelu->DoExcute(task_id);
|
||||
if (ret != RET_OK) {
|
||||
|
@ -37,7 +36,6 @@ int PReluRun(void *cdata, int task_id) {
|
|||
}
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
int PReluCPUKernel::Init() {
|
||||
if (in_tensors_[1]->ElementsNum() == 1) {
|
||||
|
@ -52,26 +50,22 @@ int PReluCPUKernel::Init() {
|
|||
}
|
||||
|
||||
int PReluCPUKernel::DoExcute(int task_id) {
|
||||
int thread_num = prelu_param_->op_parameter_.thread_num_;
|
||||
if (prelu_param_->channelShared) {
|
||||
PReluShareChannel(input_data_, output_data_, prelu_param_, task_id);
|
||||
int step = UP_DIV(prelu_param_->input_num_, thread_num);
|
||||
int start = task_id * step;
|
||||
int end = MSMIN(start + step, prelu_param_->input_num_);
|
||||
PReluShareChannel(input_data_, output_data_, prelu_param_->slope_[0], start, end);
|
||||
} else {
|
||||
int res_plane = prelu_param_->input_num_ - task_id * prelu_param_->tile_block_;
|
||||
int plane = MSMIN(prelu_param_->tile_block_, res_plane);
|
||||
if (plane <= 0) {
|
||||
return RET_OK;
|
||||
}
|
||||
float *in = input_data_ + task_id * prelu_param_->tile_block_ * prelu_param_->channel_num_;
|
||||
float *out = output_data_ + task_id * prelu_param_->tile_block_ * prelu_param_->channel_num_;
|
||||
PRelu(in, out, prelu_param_, plane);
|
||||
int step = UP_DIV(prelu_param_->tile_block_, thread_num);
|
||||
int start = task_id * step;
|
||||
int end = MSMIN(start + step, prelu_param_->tile_block_);
|
||||
PRelu(input_data_, output_data_, prelu_param_->slope_, start, end, prelu_param_->channel_num_);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PReluCPUKernel::ReSize() {
|
||||
if (prelu_param_->channelShared) {
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
auto input_tensor = in_tensors_.at(0);
|
||||
auto in_shape = input_tensor->shape();
|
||||
auto n_dim = in_shape.size();
|
||||
|
@ -81,46 +75,19 @@ int PReluCPUKernel::ReSize() {
|
|||
input_plane *= in_shape.at(i);
|
||||
}
|
||||
|
||||
prelu_param_->input_num_ = input_plane;
|
||||
prelu_param_->tile_block_ = UP_DIV(UP_DIV(input_plane, TILE_NUM), op_parameter_->thread_num_) * TILE_NUM;
|
||||
prelu_param_->input_num_ = input_plane * channel_num;
|
||||
prelu_param_->tile_block_ = input_plane;
|
||||
prelu_param_->channel_num_ = channel_num;
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PReluCPUKernel::ProcessShareChannelInput() {
|
||||
auto input_tensor = in_tensors_.at(0);
|
||||
prelu_param_->input_num_ = input_tensor->ElementsNum();
|
||||
int tile = 32;
|
||||
#if defined(ENABLE_ARM64) || defined(ENABLE_AVX)
|
||||
tile = 64;
|
||||
#endif
|
||||
prelu_param_->tile_block_ = UP_DIV(prelu_param_->input_num_, tile);
|
||||
input_data_ =
|
||||
reinterpret_cast<float *>(context_->allocator->Malloc(prelu_param_->tile_block_ * tile * sizeof(float)));
|
||||
if (input_data_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc input_data_ failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
memcpy(input_data_, ori_input_, prelu_param_->input_num_ * sizeof(float));
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int PReluCPUKernel::Run() {
|
||||
MS_ASSERT(in_tensors_.size() >= 2);
|
||||
auto input_tensor = in_tensors_[0];
|
||||
ori_input_ = reinterpret_cast<float *>(input_tensor->data_c());
|
||||
input_data_ = reinterpret_cast<float *>(input_tensor->data_c());
|
||||
output_data_ = reinterpret_cast<float *>(out_tensors_.at(kOutputIndex)->data_c());
|
||||
MS_ASSERT(ori_input_);
|
||||
MS_ASSERT(input_data_);
|
||||
MS_ASSERT(output_data_);
|
||||
if (prelu_param_->channelShared) {
|
||||
auto ret = ProcessShareChannelInput();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "ProcessShareChannel failed.";
|
||||
return ret;
|
||||
}
|
||||
} else {
|
||||
input_data_ = ori_input_;
|
||||
}
|
||||
|
||||
// negative slope tensor
|
||||
auto negative_slope_tensor = in_tensors_.at(1);
|
||||
|
@ -129,14 +96,9 @@ int PReluCPUKernel::Run() {
|
|||
auto ret = ParallelLaunch(this->context_->thread_pool_, PReluRun, this, prelu_param_->op_parameter_.thread_num_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "PRelu Run error: error_code[" << ret << "]";
|
||||
context_->allocator->Free(input_data_);
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
if (prelu_param_->channelShared) {
|
||||
memcpy(output_data_, input_data_, prelu_param_->input_num_ * sizeof(float));
|
||||
context_->allocator->Free(input_data_);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
|
|
@ -35,11 +35,9 @@ class PReluCPUKernel : public LiteKernel {
|
|||
int ReSize() override;
|
||||
int Run() override;
|
||||
int DoExcute(int task_id);
|
||||
int ProcessShareChannelInput();
|
||||
|
||||
private:
|
||||
PReluParameter *prelu_param_;
|
||||
float *ori_input_ = nullptr;
|
||||
float *input_data_ = nullptr;
|
||||
float *output_data_ = nullptr;
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue