forked from mindspore-Ecosystem/mindspore
add st for bert_thor
This commit is contained in:
parent
5ffec7efaf
commit
d96ecd2740
|
@ -0,0 +1,210 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""test bert thor performance with 8p on mlperf dataset"""
|
||||
|
||||
import os
|
||||
import time
|
||||
from multiprocessing import Process, Queue
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.dataset as dataset
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.communication.management as D
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from model_zoo.official.nlp.bert_thor.src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepCell
|
||||
from model_zoo.official.nlp.bert_thor.src.bert_net_config import bert_net_cfg
|
||||
from model_zoo.official.nlp.bert_thor.src.config import cfg
|
||||
from model_zoo.official.nlp.bert_thor.src.lr_generator import get_bert_lr, get_bert_damping
|
||||
from model_zoo.official.nlp.bert_thor.src.model_thor import Model
|
||||
from model_zoo.official.nlp.bert_thor.src.thor_for_bert_arg import THOR
|
||||
|
||||
MINDSPORE_HCCL_CONFIG_PATH = "/home/workspace/mindspore_config/hccl/rank_table_8p.json"
|
||||
DATASET_PATH = "/home/workspace/mindspore_dataset/bert/thor/en-wiki-512_test_first1wan"
|
||||
load_checkpoint_path = ""
|
||||
data_sink_steps = 100
|
||||
train_steps = 200
|
||||
batch_size = 12
|
||||
|
||||
np.random.seed(1)
|
||||
dataset.config.set_seed(1)
|
||||
os.environ['GLOG_v'] = str(2)
|
||||
|
||||
class TimeMonitor(Callback):
|
||||
"""Time Monitor."""
|
||||
def __init__(self, data_size):
|
||||
super(TimeMonitor, self).__init__()
|
||||
self.data_size = data_size
|
||||
self.epoch_mseconds_list = []
|
||||
self.per_step_mseconds_list = []
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.epoch_time = time.time()
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
self.epoch_mseconds_list.append(epoch_mseconds)
|
||||
per_step_mseconds = epoch_mseconds / self.data_size
|
||||
self.per_step_mseconds_list.append(per_step_mseconds)
|
||||
print("epoch: {}, per_step_mseconds are {}".format(cb_params.cur_epoch_num, str(per_step_mseconds)), flush=True)
|
||||
|
||||
class LossCallback(Callback):
|
||||
def __init__(self):
|
||||
super(LossCallback, self).__init__()
|
||||
self.loss_list = []
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
self.loss_list.append(cb_params.net_outputs.asnumpy())
|
||||
print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
|
||||
str(cb_params.net_outputs)), flush=True)
|
||||
|
||||
def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, schema_dir=None):
|
||||
"""create train dataset"""
|
||||
# apply repeat operations
|
||||
files = os.listdir(data_dir)
|
||||
data_files = []
|
||||
for file_name in files:
|
||||
if "tfrecord" in file_name:
|
||||
data_files.append(os.path.join(data_dir, file_name))
|
||||
data_files = sorted(data_files)
|
||||
ds = de.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
|
||||
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
|
||||
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
|
||||
shuffle=de.Shuffle.FILES if do_shuffle == "true" else False,
|
||||
num_shards=device_num, shard_id=rank, shard_equal_rows=True)
|
||||
ori_dataset_size = ds.get_dataset_size()
|
||||
print('origin dataset size: ', ori_dataset_size)
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_ids")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_positions")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="next_sentence_labels")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
logger.info("data size: {}".format(ds.get_dataset_size()))
|
||||
logger.info("repeat count: {}".format(ds.get_repeat_count()))
|
||||
return ds
|
||||
|
||||
def train_process_bert_thor(q, device_id, epoch_size, device_num):
|
||||
for i in range(device_num):
|
||||
os.system("rm -rf " + str(i))
|
||||
|
||||
os.system("mkdir " + str(device_id))
|
||||
os.chdir(str(device_id))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False)
|
||||
context.set_context(reserve_class_name_in_scope=False)
|
||||
context.set_context(max_call_depth=3000)
|
||||
os.environ['MINDSPORE_HCCL_CONFIG_PATH'] = MINDSPORE_HCCL_CONFIG_PATH
|
||||
os.environ['RANK_ID'] = str(device_id)
|
||||
os.environ['RANK_SIZE'] = str(device_num)
|
||||
|
||||
D.init()
|
||||
rank = device_id % device_num
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
|
||||
device_num=device_num)
|
||||
|
||||
bert_net_cfg.num_hidden_layers = 2
|
||||
ds = create_bert_dataset(device_num=device_num, rank=rank, do_shuffle=False, data_dir=DATASET_PATH, schema_dir=None)
|
||||
net_with_loss = BertNetworkWithLoss(bert_net_cfg, True)
|
||||
|
||||
new_repeat_count = epoch_size * ds.get_dataset_size() // data_sink_steps
|
||||
new_repeat_count = min(new_repeat_count, train_steps // data_sink_steps)
|
||||
|
||||
|
||||
lr = get_bert_lr()
|
||||
damping = get_bert_damping()
|
||||
optimizer = THOR(filter(lambda x: x.requires_grad, net_with_loss.get_parameters()), lr, cfg.Thor.momentum,
|
||||
filter(lambda x: 'matrix_A' in x.name, net_with_loss.get_parameters()),
|
||||
filter(lambda x: 'matrix_G' in x.name, net_with_loss.get_parameters()),
|
||||
cfg.Thor.weight_decay, cfg.Thor.loss_scale, bert_net_cfg.num_hidden_layers,
|
||||
bert_net_cfg.batch_size, damping)
|
||||
time_monitor_callback = TimeMonitor(data_sink_steps)
|
||||
loss_callback = LossCallback()
|
||||
callback = [time_monitor_callback, loss_callback]
|
||||
|
||||
if load_checkpoint_path:
|
||||
param_dict = load_checkpoint(load_checkpoint_path)
|
||||
load_param_into_net(net_with_loss, param_dict)
|
||||
|
||||
net_with_grads = BertTrainOneStepCell(net_with_loss, optimizer=optimizer)
|
||||
model = Model(net_with_grads, frequency=cfg.Thor.frequency)
|
||||
model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=True, sink_size=data_sink_steps)
|
||||
|
||||
loss_list = loss_callback.loss_list
|
||||
per_step_mseconds = time_monitor_callback.per_step_mseconds_list
|
||||
q.put({'loss': loss_list, 'cost': per_step_mseconds})
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_bert_thor_mlperf_8p():
|
||||
"""test bert thor mlperf 8p"""
|
||||
q = Queue()
|
||||
device_num = 8
|
||||
epoch_size = 2
|
||||
process = []
|
||||
for i in range(device_num):
|
||||
device_id = i
|
||||
process.append(Process(target=train_process_bert_thor, args=(q, device_id, epoch_size, device_num)))
|
||||
|
||||
for i in range(device_num):
|
||||
process[i].start()
|
||||
|
||||
print("Waiting for all subprocesses done...")
|
||||
|
||||
for i in range(device_num):
|
||||
process[i].join()
|
||||
|
||||
sum_loss_list = []
|
||||
sum_cost_list = []
|
||||
for _ in range(train_steps // data_sink_steps):
|
||||
sum_loss_list.append(0.0)
|
||||
sum_cost_list.append(0.0)
|
||||
|
||||
for _ in range(device_num):
|
||||
output = q.get()
|
||||
loss_list = output['loss']
|
||||
cost_list = output['cost']
|
||||
sum_loss_list = np.sum([loss_list, sum_loss_list], axis=0)
|
||||
sum_cost_list = np.sum([cost_list, sum_cost_list], axis=0)
|
||||
|
||||
for j in range(train_steps // data_sink_steps):
|
||||
print("epoch: ", j, "sum_loss: ", sum_loss_list[j], "sum_cost: ", sum_cost_list[j])
|
||||
|
||||
mean_loss = sum_loss_list[-1] / device_num
|
||||
mean_cost = sum_cost_list[-1] / device_num
|
||||
|
||||
for i in range(device_num):
|
||||
os.system("rm -rf " + str(i))
|
||||
|
||||
print("End training...")
|
||||
assert mean_cost < 51
|
||||
assert mean_loss < 8.5
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bert_thor_mlperf_8p()
|
Loading…
Reference in New Issue