forked from mindspore-Ecosystem/mindspore
fix network spell error.
This commit is contained in:
parent
bca26cf68e
commit
d8dfb3f4d7
|
@ -152,7 +152,7 @@ sh scripts/run_distribute_train_gpu.sh DATA_PATH
|
|||
|
||||
### Result
|
||||
|
||||
Training result will be stored in the example path. Checkpoints will be stored at `ckpt_path` by default, and training log will be redirected to `./log.txt` like followings.
|
||||
Training result will be stored in the example path. Checkpoints will be stored at `ckpt_path` by default, and training log will be redirected to `./log.txt` like following.
|
||||
|
||||
- Ascend
|
||||
|
||||
|
@ -209,7 +209,7 @@ You can start training using python or shell scripts. The usage of shell scripts
|
|||
|
||||
### Result
|
||||
|
||||
Evaluation result will be stored in the example path, you can find result like the followings in `eval.log`.
|
||||
Evaluation result will be stored in the example path, you can find result like the following in `eval.log`.
|
||||
|
||||
- Ascend
|
||||
|
||||
|
|
|
@ -243,7 +243,7 @@ class DetectionEngine():
|
|||
self.results[img_id][coco_clsi].append([x_lefti, y_lefti, wi, hi, confi])
|
||||
|
||||
|
||||
def conver_testing_shape(args_test):
|
||||
def convert_testing_shape(args_test):
|
||||
testing_shape = [int(args_test.testing_shape), int(args_test.testing_shape)]
|
||||
return testing_shape
|
||||
|
||||
|
@ -296,7 +296,7 @@ def test():
|
|||
|
||||
config = ConfigYOLOV4CspDarkNet53()
|
||||
if args.testing_shape:
|
||||
config.test_img_shape = conver_testing_shape(args)
|
||||
config.test_img_shape = convert_testing_shape(args)
|
||||
|
||||
data_txt = os.path.join(args.data_dir, 'testdev2017.txt')
|
||||
ds, data_size = create_yolo_datasetv2(data_root, data_txt=data_txt, batch_size=args.per_batch_size,
|
||||
|
|
|
@ -70,8 +70,8 @@ def nms(boxes, threshold=0.5):
|
|||
intersect_area = intersect_w * intersect_h
|
||||
ovr = intersect_area / (areas[i] + areas[order[1:]] - intersect_area)
|
||||
|
||||
indexes = np.where(ovr <= threshold)[0]
|
||||
order = order[indexes + 1]
|
||||
indices = np.where(ovr <= threshold)[0]
|
||||
order = order[indices + 1]
|
||||
|
||||
return reserved_boxes
|
||||
|
||||
|
|
Loading…
Reference in New Issue