forked from mindspore-Ecosystem/mindspore
updata release note
This commit is contained in:
parent
24ebb966e9
commit
d8bcea4d9b
142
RELEASE.md
142
RELEASE.md
|
@ -1,3 +1,145 @@
|
|||
# MindSpore 1.5.0
|
||||
|
||||
## MindSpore 1.5.0 Release Notes
|
||||
|
||||
### Major Features and Improvements
|
||||
|
||||
#### NewModels
|
||||
|
||||
- [STABLE] Add CV model on Ascend: Fast-SCNN
|
||||
- [BETA] Add CV models on Ascend: midas_V2, attgan, FairMOT, CenterNet_resnet101, SEResNext, YOLOV3-tiny, RetinaFace
|
||||
- [STABLE] Add CV models on GPU: ssd_mobilenetv1_fpn, shufflenetv1, tinyDarkNet, CNN-CTC, unet++, DeepText, SqueezeNet
|
||||
- [STABLE] Add NLP models on GPU: GRU, GNMT2, Bert-Squad
|
||||
- [STABLE] Add recommand models on GPU: NCF
|
||||
- [BETA] Add CV models on GPU: FaceAttribute, FaceDetection, FaceRecongnition SENet,
|
||||
- [BETA] Add Audio models on GPU: DeepSpeech2
|
||||
- [STABLE]`model_zoo` has been seperated to an individual repository`models`
|
||||
|
||||
#### FrontEnd
|
||||
|
||||
* [STABLE] Support`while` and`break`,`continue` statements of training network in`GRAPH_MODE`.
|
||||
* [BETA] Support export MindIR file after model training in cloud side and evaluate in edge side by import the MindIR file.
|
||||
* [STABLE] Support forward mode auto-diff interface Jvp(Jacobian-Vector-Product).
|
||||
* [STABLE] Support backward mode auto-diff interface Vjp(Vector-Jacobian-Product).
|
||||
|
||||
#### Auto Parallel
|
||||
|
||||
* [STABLE] Support distributed pipeline inference.
|
||||
* [STABLE] Add implementation of the sparse attention and its distributed operator.
|
||||
* [STABLE] Add implementations of distributed operator of Conv2d/Conv2dTranspose/Conv2dBackpropInput/Maxpool/Avgpool/Batchnorm/Gatherd.
|
||||
* [STABLE] Support configuring the dataset strategy on distributed training and inference mode.
|
||||
* [STABLE] Add high level API of the Transformer module.
|
||||
|
||||
#### Executor
|
||||
|
||||
* [STABLE] Support AlltoAll operator.
|
||||
* [STABLE] CPU operator (Adam) performance optimization increased by 50%.
|
||||
* [BETA] Support Adam offload feature, reduce the static memory usage of Pangu large model by 50%.
|
||||
* [STABLE] MindSpore Ascend backend supports configuration operator generation and loading cache path.
|
||||
* [STABLE] MindSpore Ascend backend supports lazy build in PyNaitve mode and compilation performance improved by 10 times.
|
||||
* [STABLE] The function or Cell decorated by ms_function supports gradient calculation in PyNative mode.
|
||||
* [STABLE] The outermost network supports parameters of non tensor type in PyNative mode.
|
||||
|
||||
#### DataSet
|
||||
|
||||
* [BETA] Add a new method for class Model to support auto data preprocessing in scenario of Ascend 310 inference.
|
||||
* [STABLE] Add a new drawing tool to visualize detection/segmentation datasets.
|
||||
* [STABLE] Support a new tensor operaiton named ConvertColor to support color space transform of images.
|
||||
* [STABLE] Enhance the following tensor operations to handle multiple columns simultaneously: RandomCrop, RandomHorizontalFlip, RandomResize, RandomResizedCrop, RandomVerticalFlip.
|
||||
* [STABLE] Support electromagnetic simulation dataset loading and data augmentation.
|
||||
* [STABLE] Optimze the error logs of Dataset to make them more friendly to users.
|
||||
|
||||
#### Federated Learning
|
||||
|
||||
#### Running Data Recorder
|
||||
|
||||
- [STABLE] RDR saves collected data files within directories named by Rank ID on distributed training on Ascend, GPU and CPU.
|
||||
|
||||
#### GraphKernel Fusion
|
||||
|
||||
### API Change
|
||||
|
||||
#### Backwards Incompatible Change
|
||||
|
||||
##### Python API
|
||||
|
||||
###### New Recomputation Configuration for AutoParallel and SemiAutoParallel Scenarios
|
||||
|
||||
Configuring the recomputation of the communication operations generated by the model parallel and optimizer parallel to save the memory on the
|
||||
devices. Users can pass `mp_comm_recompute` and `parallel_optimizer_comm_recompute` to enable the recomputation of the communication operations.
|
||||
|
||||
|
||||
### Bug fixes
|
||||
|
||||
#### FrontEnd
|
||||
|
||||
- Fix bug of too many subgraphs when network include`for` statement.([!23669](https://gitee.com/mindspore/mindspore/pulls/23669))
|
||||
|
||||
#### Executor
|
||||
|
||||
* RunTask failed when parameter_broadcast is enabled in PyNative mode. ([!23255](https://gitee.com/mindspore/mindspore/pulls/23255))
|
||||
* An illegal memory access was encountered in the dynamic shape net on GPU.
|
||||
* Fix tune failed for DynamicRnn. ([!21081](https://gitee.com/mindspore/mindspore/pulls/21081))
|
||||
|
||||
#### Dataset
|
||||
|
||||
- Optimize thread monitoring to solve the problem of running multiple multiprocessesing on Windwos. ([!23232](https://gitee.com/mindspore/mindspore/pulls/23232))
|
||||
- Fix bugs of Dataset tensor operations in lite mode. ([!21999](https://gitee.com/mindspore/mindspore/pulls/21999))
|
||||
- Fix memory increasing when using create_dict_iterator in for loop. ([!22529](https://gitee.com/mindspore/mindspore/pulls/22529))([!22529](https://gitee.com/mindspore/mindspore/pulls/22529))
|
||||
|
||||
## MindSpore Lite
|
||||
|
||||
### Major Features and Improvements
|
||||
|
||||
#### Converter and runtime
|
||||
|
||||
1. Optimize TDNN-like streaming model by reusing the result of last inference.
|
||||
2. Support dynamic filter Convolution.
|
||||
3. Support serializing float32 weight into float16 weight for reducing size of model file.
|
||||
4. Provide unified runtime API for developer reusing their code between cloud side and end side.
|
||||
5. Now developer can configure build-in pass as custom passes.
|
||||
6. Now user can specify format and shape of model inputs while converting model.
|
||||
7. Support multiple devices inference, includeing CPU, NPU, GPU. User can set devices in mindspore::Context.
|
||||
8. Support mixed precision inference. User can set inference precision by LoadConfig API.
|
||||
9. Support custom operator registration and enable inference on third-party hardware.
|
||||
|
||||
#### ARM backend optimization
|
||||
|
||||
1. Support the nchw data format of some Operators, such as Conv, InstanceNorm, etc. The performance of some models convertered from onnx and caffe is greatly improved.
|
||||
2. Fix bugs of memory leak on NPU.
|
||||
|
||||
#### Post quantization
|
||||
|
||||
1. Weight quantization supports mixed bit quantization.
|
||||
2. Full quantization supports data pre-processing.
|
||||
3. Adjust the quantization parameters from the command line to the configuration file.
|
||||
|
||||
#### Training on Device
|
||||
|
||||
1. Unify lite external api with MindSpore.
|
||||
2. Implement static memory allocator and common workspace for TOD,save memory 10-20%.
|
||||
3. Provide getgradients and setgradients interface,get and set optimizer params interfaces to support MOE Model.
|
||||
4. Support user specified output node when export IOD Model.
|
||||
5. Support more text networks (tinybert,albert) and operators.
|
||||
|
||||
#### Codegen
|
||||
|
||||
1. Support kernel register for custom op. Third-party hardware like NNIE can be accessed through it.
|
||||
|
||||
### API Change
|
||||
|
||||
#### API Incompatible Change
|
||||
|
||||
##### C++ API
|
||||
|
||||
### Contributors
|
||||
|
||||
Thanks goes to these wonderful people:
|
||||
|
||||
Adel, AGroupofProbiotocs, anthonyaje, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, eric, Eric, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Islam Amin, Jesse, , Jiabin Liu, jianghui58, jiangzhiwen, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, Jonathan, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, laiyongqiang, leonwanghui, Li, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, luoyang, lvchangquan, lvliang, lz, mahdi, Mahdi, maning202007, Margaret_wangrui, mayang, mengyuanli, Ming_blue, nhussain, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangnan39@huawei.com, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xulei2020, Xun, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghaibo5@huawei.com, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, Zhenglong Li, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Zirui, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking.
|
||||
|
||||
Contributions of any kind are welcome!
|
||||
|
||||
# MindSpore 1.3.0
|
||||
|
||||
## MindSpore 1.3.0 Release Notes
|
||||
|
|
Loading…
Reference in New Issue