forked from mindspore-Ecosystem/mindspore
!9415 [MS][LITE][CPU]add int8 group conv
From: @fuzhiye Reviewed-by: @zhang_xue_tong,@hangangqiang Signed-off-by: @zhang_xue_tong
This commit is contained in:
commit
d2fde24794
|
@ -221,7 +221,7 @@ void FreeMemoryFp16(const std::vector<kernel::LiteKernel *> &group_convs, const
|
|||
}
|
||||
}
|
||||
|
||||
lite::Tensor *CreateInputTensor(TypeId data_type, std::vector<int> in_shape, bool infered_flag) {
|
||||
lite::Tensor *CreateInputTensorFp16(TypeId data_type, std::vector<int> in_shape, bool infered_flag) {
|
||||
auto in_tensor = new (std::nothrow) lite::Tensor(data_type, in_shape, Format_NHWC, lite::Tensor::Category::VAR);
|
||||
if (in_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new in_tensor failed.";
|
||||
|
@ -238,8 +238,8 @@ lite::Tensor *CreateInputTensor(TypeId data_type, std::vector<int> in_shape, boo
|
|||
return in_tensor;
|
||||
}
|
||||
|
||||
lite::Tensor *CreateFilterTensor(TypeId data_type, std::vector<int> filter_shape,
|
||||
const std::vector<lite::Tensor *> &inputs, int copy_length, int index) {
|
||||
lite::Tensor *CreateFilterTensorFp16(TypeId data_type, std::vector<int> filter_shape,
|
||||
const std::vector<lite::Tensor *> &inputs, int copy_length, int index) {
|
||||
auto filter_tensor =
|
||||
new (std::nothrow) lite::Tensor(data_type, filter_shape, Format_NHWC, lite::Tensor::Category::CONST_TENSOR);
|
||||
if (filter_tensor == nullptr) {
|
||||
|
@ -263,8 +263,8 @@ lite::Tensor *CreateFilterTensor(TypeId data_type, std::vector<int> filter_shape
|
|||
return filter_tensor;
|
||||
}
|
||||
|
||||
lite::Tensor *CreateBiasTensor(TypeId data_type, std::vector<int> bias_shape, const std::vector<lite::Tensor *> &inputs,
|
||||
int new_out_channel, int index) {
|
||||
lite::Tensor *CreateBiasTensorFp16(TypeId data_type, std::vector<int> bias_shape,
|
||||
const std::vector<lite::Tensor *> &inputs, int new_out_channel, int index) {
|
||||
auto *origin_bias = inputs.at(kBiasIndex)->data_c();
|
||||
auto bias_tensor =
|
||||
new (std::nothrow) lite::Tensor(data_type, bias_shape, Format_NHWC, lite::Tensor::Category::CONST_TENSOR);
|
||||
|
@ -289,8 +289,8 @@ lite::Tensor *CreateBiasTensor(TypeId data_type, std::vector<int> bias_shape, co
|
|||
return bias_tensor;
|
||||
}
|
||||
|
||||
lite::Tensor *CreateOutputTensor(std::vector<int> out_shape, const std::vector<lite::Tensor *> &outputs,
|
||||
bool infered_flag, int index) {
|
||||
lite::Tensor *CreateOutputTensorFp16(std::vector<int> out_shape, const std::vector<lite::Tensor *> &outputs,
|
||||
bool infered_flag, int index) {
|
||||
auto out_tensor = new (std::nothrow) lite::Tensor();
|
||||
if (out_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new tmp_out_tensor failed.";
|
||||
|
@ -356,7 +356,7 @@ kernel::LiteKernel *CpuGroupConvFp16KernelCreator(const std::vector<lite::Tensor
|
|||
return nullptr;
|
||||
}
|
||||
// create new input for each group
|
||||
auto in_tensor = CreateInputTensor(mindspore::kNumberTypeFloat16, in_shape, infered_flag);
|
||||
auto in_tensor = CreateInputTensorFp16(mindspore::kNumberTypeFloat16, in_shape, infered_flag);
|
||||
if (in_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemoryFp16(group_convs, new_inputs, new_outputs);
|
||||
|
@ -367,7 +367,8 @@ kernel::LiteKernel *CpuGroupConvFp16KernelCreator(const std::vector<lite::Tensor
|
|||
|
||||
// create new weight
|
||||
int copy_length = conv_param->kernel_h_ * conv_param->kernel_w_ * new_in_channel * new_out_channel;
|
||||
auto filter_tensor = CreateFilterTensor(inputs.at(kWeightIndex)->data_type(), filter_shape, inputs, copy_length, i);
|
||||
auto filter_tensor =
|
||||
CreateFilterTensorFp16(inputs.at(kWeightIndex)->data_type(), filter_shape, inputs, copy_length, i);
|
||||
if (filter_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemoryFp16(group_convs, new_inputs, new_outputs);
|
||||
|
@ -378,7 +379,8 @@ kernel::LiteKernel *CpuGroupConvFp16KernelCreator(const std::vector<lite::Tensor
|
|||
|
||||
// if has bias, create new bias
|
||||
if (has_bias) {
|
||||
auto bias_tensor = CreateBiasTensor(inputs.at(kBiasIndex)->data_type(), bias_shape, inputs, new_out_channel, i);
|
||||
auto bias_tensor =
|
||||
CreateBiasTensorFp16(inputs.at(kBiasIndex)->data_type(), bias_shape, inputs, new_out_channel, i);
|
||||
if (bias_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemoryFp16(group_convs, new_inputs, new_outputs);
|
||||
|
@ -390,7 +392,7 @@ kernel::LiteKernel *CpuGroupConvFp16KernelCreator(const std::vector<lite::Tensor
|
|||
|
||||
// create new output tensors
|
||||
for (size_t j = 0; j < outputs.size(); ++j) {
|
||||
auto out_tensor = CreateOutputTensor(out_shape, outputs, infered_flag, j);
|
||||
auto out_tensor = CreateOutputTensorFp16(out_shape, outputs, infered_flag, j);
|
||||
if (out_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemoryFp16(group_convs, new_inputs, new_outputs);
|
||||
|
|
|
@ -168,8 +168,8 @@ ConvParameter *CreateNewConvParameter(ConvParameter *parameter) {
|
|||
return conv_parameter;
|
||||
}
|
||||
|
||||
void FreeMemoryFp32(const std::vector<kernel::LiteKernel *> &group_convs, const std::vector<lite::Tensor *> &new_inputs,
|
||||
const std::vector<lite::Tensor *> &new_outputs) {
|
||||
void FreeMemory(const std::vector<kernel::LiteKernel *> &group_convs, const std::vector<lite::Tensor *> &new_inputs,
|
||||
const std::vector<lite::Tensor *> &new_outputs) {
|
||||
for (auto sub_conv : group_convs) {
|
||||
if (sub_conv != nullptr) {
|
||||
delete sub_conv;
|
||||
|
@ -187,7 +187,7 @@ void FreeMemoryFp32(const std::vector<kernel::LiteKernel *> &group_convs, const
|
|||
}
|
||||
}
|
||||
|
||||
lite::Tensor *CreateInputTensorFp32(TypeId data_type, std::vector<int> in_shape, bool infered_flag) {
|
||||
lite::Tensor *CreateInputTensor(TypeId data_type, std::vector<int> in_shape, bool infered_flag) {
|
||||
auto in_tensor = new (std::nothrow) lite::Tensor(data_type, in_shape, Format_NHWC, lite::Tensor::Category::VAR);
|
||||
if (in_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new in_tensor failed.";
|
||||
|
@ -247,8 +247,8 @@ lite::Tensor *CreateBiasTensorFp32(TypeId data_type, std::vector<int> bias_shape
|
|||
return bias_tensor;
|
||||
}
|
||||
|
||||
lite::Tensor *CreateOutputTensorFp32(std::vector<int> out_shape, const std::vector<lite::Tensor *> &outputs,
|
||||
bool infered_flag, int index) {
|
||||
lite::Tensor *CreateOutputTensor(std::vector<int> out_shape, const std::vector<lite::Tensor *> &outputs,
|
||||
bool infered_flag, int index) {
|
||||
auto out_tensor = new (std::nothrow) lite::Tensor();
|
||||
if (out_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new tmp_out_tensor failed.";
|
||||
|
@ -324,16 +324,16 @@ kernel::LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor
|
|||
std::vector<lite::Tensor *> new_outputs;
|
||||
auto new_conv_parameter = CreateNewConvParameter(conv_param);
|
||||
if (new_conv_parameter == nullptr) {
|
||||
FreeMemoryFp32(group_convs, new_inputs, new_outputs);
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "Get new conv parameter failed.";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// create new input for each group
|
||||
auto in_tensor = CreateInputTensorFp32(inputs.front()->data_type(), in_shape, infered_flag);
|
||||
auto in_tensor = CreateInputTensor(inputs.front()->data_type(), in_shape, infered_flag);
|
||||
if (in_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemoryFp32(group_convs, new_inputs, new_outputs);
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "create input tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -345,7 +345,7 @@ kernel::LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor
|
|||
CreateFilterTensorFp32(inputs.at(kWeightIndex)->data_type(), filter_shape, inputs, copy_length, i);
|
||||
if (filter_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemoryFp32(group_convs, new_inputs, new_outputs);
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "create filter tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -357,7 +357,7 @@ kernel::LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor
|
|||
CreateBiasTensorFp32(inputs.at(kBiasIndex)->data_type(), bias_shape, inputs, new_out_channel, i);
|
||||
if (bias_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemoryFp32(group_convs, new_inputs, new_outputs);
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "create bias_tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -366,10 +366,10 @@ kernel::LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor
|
|||
|
||||
// create new output tensor
|
||||
for (size_t j = 0; j < outputs.size(); ++j) {
|
||||
auto out_tensor = CreateOutputTensorFp32(out_shape, outputs, infered_flag, j);
|
||||
auto out_tensor = CreateOutputTensor(out_shape, outputs, infered_flag, j);
|
||||
if (out_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemoryFp32(group_convs, new_inputs, new_outputs);
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "new out_tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
|
|
|
@ -61,6 +61,16 @@ class ConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
|
|||
float *packed_input_ = nullptr;
|
||||
float *col_major_input_ = nullptr;
|
||||
};
|
||||
|
||||
void FreeMemory(const std::vector<kernel::LiteKernel *> &group_convs, const std::vector<lite::Tensor *> &new_inputs,
|
||||
const std::vector<lite::Tensor *> &new_outputs);
|
||||
|
||||
ConvParameter *CreateNewConvParameter(ConvParameter *parameter);
|
||||
|
||||
lite::Tensor *CreateInputTensor(TypeId data_type, std::vector<int> in_shape, bool infered_flag);
|
||||
|
||||
lite::Tensor *CreateOutputTensor(std::vector<int> out_shape, const std::vector<lite::Tensor *> &outputs,
|
||||
bool infered_flag, int index);
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CONVOLUTION_H_
|
||||
|
|
|
@ -28,6 +28,11 @@ using mindspore::schema::PrimitiveType_Conv2D;
|
|||
namespace mindspore::kernel {
|
||||
int GroupConvolutionCPUKernel::Init() {
|
||||
for (int i = 0; i < group_num_; ++i) {
|
||||
auto sub_conv = group_convs_.at(i);
|
||||
if (sub_conv == nullptr) {
|
||||
MS_LOG(ERROR) << "sub con " << i << " is null.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto ret = group_convs_.at(i)->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Sub kernel init failed.";
|
||||
|
@ -127,7 +132,7 @@ int GroupConvolutionCPUKernel::PreProcess() {
|
|||
auto ret = output->MallocData();
|
||||
if (ret != RET_OK) {
|
||||
FreeSubKernel();
|
||||
MS_LOG(ERROR) << "fp32 group conv out tensor malloc data failed.";
|
||||
MS_LOG(ERROR) << "group conv out tensor malloc data failed.";
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -41,15 +41,17 @@ class GroupConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
|
|||
int ReSize() override;
|
||||
int Run() override;
|
||||
int PreProcess() override;
|
||||
void SeparateInput(int group_id);
|
||||
void PostConcat(int group_id);
|
||||
virtual void SeparateInput(int group_id);
|
||||
virtual void PostConcat(int group_id);
|
||||
void FreeSubKernel();
|
||||
|
||||
private:
|
||||
protected:
|
||||
std::vector<kernel::LiteKernel *> group_convs_;
|
||||
const int group_num_;
|
||||
|
||||
private:
|
||||
float *ori_in_data_ = nullptr; // do not free
|
||||
float *ori_out_data_ = nullptr; // do not free
|
||||
const int group_num_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -20,8 +20,10 @@
|
|||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
||||
#include "src/runtime/kernel/arm/fp32/convolution_fp32.h"
|
||||
#include "src/runtime/kernel/arm/int8/convolution_1x1_int8.h"
|
||||
#include "src/runtime/kernel/arm/int8/convolution_3x3_int8.h"
|
||||
#include "src/runtime/kernel/arm/int8/group_convolution_int8.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
#ifdef ENABLE_ARM64
|
||||
#include "src/runtime/kernel/arm/int8/opt_op_handler.h"
|
||||
|
@ -32,6 +34,7 @@ using mindspore::lite::KernelRegistrar;
|
|||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Conv2D;
|
||||
using mindspore::schema::Format::Format_NHWC;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
void ConvolutionInt8CPUKernel::CheckSupportOptimize() {
|
||||
|
@ -242,6 +245,166 @@ int ConvolutionInt8CPUKernel::Run() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
lite::Tensor *CreateFilterTensorInt8(TypeId data_type, std::vector<int> filter_shape,
|
||||
const std::vector<lite::Tensor *> &inputs, int copy_length, int index) {
|
||||
MS_ASSERT(data_type == kNumberTypeInt8);
|
||||
auto filter_tensor =
|
||||
new (std::nothrow) lite::Tensor(data_type, filter_shape, Format_NHWC, lite::Tensor::Category::CONST_TENSOR);
|
||||
if (filter_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new filter_tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = filter_tensor->MallocData();
|
||||
if (ret != RET_OK) {
|
||||
delete filter_tensor;
|
||||
MS_LOG(ERROR) << "filter_tensor malloc failed.";
|
||||
return nullptr;
|
||||
}
|
||||
auto *origin_weight = reinterpret_cast<int8_t *>(inputs.at(kWeightIndex)->data_c());
|
||||
memcpy(filter_tensor->data_c(), origin_weight + index * copy_length, copy_length * sizeof(int8_t));
|
||||
return filter_tensor;
|
||||
}
|
||||
|
||||
lite::Tensor *CreateBiasTensorInt8(TypeId data_type, std::vector<int> bias_shape,
|
||||
const std::vector<lite::Tensor *> &inputs, int new_out_channel, int index) {
|
||||
MS_ASSERT(data_type == kNumberTypeInt32);
|
||||
auto *origin_bias = inputs.at(kBiasIndex)->data_c();
|
||||
auto bias_tensor =
|
||||
new (std::nothrow) lite::Tensor(data_type, bias_shape, Format_NHWC, lite::Tensor::Category::CONST_TENSOR);
|
||||
if (bias_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new bias_tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = bias_tensor->MallocData();
|
||||
if (ret != RET_OK) {
|
||||
delete bias_tensor;
|
||||
MS_LOG(ERROR) << "bias_tensor malloc failed.";
|
||||
return nullptr;
|
||||
}
|
||||
auto bias_data = reinterpret_cast<int32_t *>(origin_bias);
|
||||
memcpy(bias_tensor->data_c(), bias_data + index * new_out_channel, new_out_channel * sizeof(int32_t));
|
||||
return bias_tensor;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuConvInt8KernelSelect(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
|
||||
const InnerContext *ctx, const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto conv_param = reinterpret_cast<ConvParameter *>(op_parameter);
|
||||
kernel::LiteKernel *kernel = nullptr;
|
||||
if (conv_param->kernel_h_ == 3 && conv_param->kernel_w_ == 3 && conv_param->stride_h_ == 1 &&
|
||||
conv_param->stride_w_ == 1 && conv_param->dilation_h_ == 1 && conv_param->dilation_w_ == 1) {
|
||||
#ifdef ENABLE_ARM64
|
||||
if (mindspore::lite::IsSupportSDot()) {
|
||||
kernel = new (std::nothrow) kernel::ConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
||||
} else {
|
||||
kernel = new (std::nothrow) kernel::Convolution3x3Int8CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
||||
}
|
||||
#else
|
||||
kernel = new (std::nothrow) kernel::Convolution3x3Int8CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
||||
#endif
|
||||
} else if (conv_param->kernel_h_ == 1 && conv_param->kernel_w_ == 1) {
|
||||
kernel = new (std::nothrow) kernel::Convolution1x1Int8CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
||||
} else {
|
||||
kernel = new (std::nothrow) kernel::ConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuGroupConvInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
|
||||
const InnerContext *ctx, const mindspore::lite::PrimitiveC *primitive,
|
||||
int group) {
|
||||
auto conv_param = reinterpret_cast<ConvParameter *>(op_parameter);
|
||||
std::vector<int> in_shape;
|
||||
std::vector<int> out_shape;
|
||||
int new_in_channel = inputs.at(kWeightIndex)->Channel();
|
||||
int new_out_channel = 0;
|
||||
if (group == 0) {
|
||||
MS_LOG(ERROR) << "Divisor 'group' cannot be 0.";
|
||||
return nullptr;
|
||||
} else {
|
||||
new_out_channel = inputs.at(kWeightIndex)->Batch() / group;
|
||||
}
|
||||
bool infered_flag = primitive != nullptr && primitive->infer_flag();
|
||||
if (infered_flag) {
|
||||
int batch = inputs.front()->Batch();
|
||||
int in_h = inputs.front()->Height();
|
||||
int in_w = inputs.front()->Width();
|
||||
conv_param->input_channel_ = new_in_channel;
|
||||
conv_param->output_channel_ = new_out_channel;
|
||||
in_shape = {batch, in_h, in_w, new_in_channel};
|
||||
out_shape = {batch, conv_param->output_h_, conv_param->output_w_, new_out_channel};
|
||||
}
|
||||
std::vector<int> filter_shape = {new_out_channel, conv_param->kernel_h_, conv_param->kernel_w_, new_in_channel};
|
||||
std::vector<int> bias_shape = {new_out_channel};
|
||||
|
||||
// create sub kernels
|
||||
std::vector<kernel::LiteKernel *> group_convs;
|
||||
for (int i = 0; i < group; ++i) {
|
||||
std::vector<lite::Tensor *> new_inputs;
|
||||
std::vector<lite::Tensor *> new_outputs;
|
||||
auto new_conv_parameter = CreateNewConvParameter(conv_param);
|
||||
if (new_conv_parameter == nullptr) {
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "Get new conv parameter failed.";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// create new input for each group
|
||||
auto input_data_type = inputs.front()->data_type();
|
||||
MS_ASSERT(input_data_type == kNumberTypeInt8);
|
||||
auto in_tensor = CreateInputTensor(input_data_type, in_shape, infered_flag);
|
||||
if (in_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "create input tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
new_inputs.emplace_back(in_tensor);
|
||||
|
||||
// create new weight
|
||||
int copy_length = conv_param->kernel_h_ * conv_param->kernel_w_ * new_in_channel * new_out_channel;
|
||||
auto filter_tensor =
|
||||
CreateFilterTensorInt8(inputs.at(kWeightIndex)->data_type(), filter_shape, inputs, copy_length, i);
|
||||
if (filter_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "create filter tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
new_inputs.emplace_back(filter_tensor);
|
||||
|
||||
// if has bias, create new bias
|
||||
if (inputs.size() == 3) {
|
||||
auto bias_tensor =
|
||||
CreateBiasTensorInt8(inputs.at(kBiasIndex)->data_type(), bias_shape, inputs, new_out_channel, i);
|
||||
if (bias_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "create bias_tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
new_inputs.emplace_back(bias_tensor);
|
||||
}
|
||||
|
||||
// create new output tensor
|
||||
for (size_t j = 0; j < outputs.size(); ++j) {
|
||||
auto out_tensor = CreateOutputTensor(out_shape, outputs, infered_flag, j);
|
||||
if (out_tensor == nullptr) {
|
||||
delete new_conv_parameter;
|
||||
FreeMemory(group_convs, new_inputs, new_outputs);
|
||||
MS_LOG(ERROR) << "new out_tensor failed.";
|
||||
return nullptr;
|
||||
}
|
||||
new_outputs.emplace_back(out_tensor);
|
||||
}
|
||||
group_convs.emplace_back(CpuConvInt8KernelSelect(
|
||||
new_inputs, new_outputs, reinterpret_cast<OpParameter *>(new_conv_parameter), ctx, primitive));
|
||||
}
|
||||
return new (std::nothrow)
|
||||
GroupConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx, primitive, group_convs, group);
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuConvInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
|
@ -249,27 +412,12 @@ kernel::LiteKernel *CpuConvInt8KernelCreator(const std::vector<lite::Tensor *> &
|
|||
MS_ASSERT(opParameter != nullptr);
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_Conv2D);
|
||||
auto conv_param = reinterpret_cast<ConvParameter *>(opParameter);
|
||||
int kernel_h = conv_param->kernel_h_;
|
||||
int kernel_w = conv_param->kernel_w_;
|
||||
int stride_h = conv_param->stride_h_;
|
||||
int stride_w = conv_param->stride_w_;
|
||||
int dilation_h = conv_param->dilation_h_;
|
||||
int dilation_w = conv_param->dilation_w_;
|
||||
kernel::LiteKernel *kernel;
|
||||
if (kernel_h == 3 && kernel_w == 3 && stride_h == 1 && stride_w == 1 && dilation_h == 1 && dilation_w == 1) {
|
||||
#ifdef ENABLE_ARM64
|
||||
if (mindspore::lite::IsSupportSDot()) {
|
||||
kernel = new (std::nothrow) kernel::ConvolutionInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
} else {
|
||||
kernel = new (std::nothrow) kernel::Convolution3x3Int8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
}
|
||||
#else
|
||||
kernel = new (std::nothrow) kernel::Convolution3x3Int8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
#endif
|
||||
} else if (kernel_h == 1 && kernel_w == 1) {
|
||||
kernel = new (std::nothrow) kernel::Convolution1x1Int8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
kernel::LiteKernel *kernel = nullptr;
|
||||
if (conv_param->group_ == 1) {
|
||||
kernel = CpuConvInt8KernelSelect(inputs, outputs, opParameter, ctx, primitive);
|
||||
} else {
|
||||
kernel = new (std::nothrow) kernel::ConvolutionInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
MS_ASSERT(conv_param->group_ > 1);
|
||||
kernel = CpuGroupConvInt8KernelCreator(inputs, outputs, opParameter, ctx, primitive, conv_param->group_);
|
||||
}
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "kernel is nullptr.";
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/int8/group_convolution_int8.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Conv2D;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
void GroupConvolutionInt8CPUKernel::SeparateInput(int group_id) {
|
||||
int in_plane = conv_param_->input_h_ * conv_param_->input_w_;
|
||||
int sub_in_channel = conv_param_->input_channel_;
|
||||
int ori_in_channel = sub_in_channel * group_num_;
|
||||
auto sub_in_data = reinterpret_cast<int8_t *>(group_convs_.at(group_id)->in_tensors().front()->data_c());
|
||||
int8_t *src_ptr = ori_in_data_ + group_id * sub_in_channel;
|
||||
int8_t *dst_ptr = sub_in_data;
|
||||
for (int i = 0; i < in_plane; ++i) {
|
||||
memcpy(dst_ptr, src_ptr, sub_in_channel * sizeof(int8_t));
|
||||
src_ptr += ori_in_channel;
|
||||
dst_ptr += sub_in_channel;
|
||||
}
|
||||
}
|
||||
|
||||
void GroupConvolutionInt8CPUKernel::PostConcat(int group_id) {
|
||||
int out_plane = conv_param_->output_h_ * conv_param_->output_w_;
|
||||
int sub_out_channel = conv_param_->output_channel_;
|
||||
int ori_out_channel = sub_out_channel * group_num_;
|
||||
auto sub_out_data = reinterpret_cast<int8_t *>(group_convs_.at(group_id)->out_tensors().front()->data_c());
|
||||
int8_t *src_ptr = sub_out_data;
|
||||
int8_t *dst_ptr = ori_out_data_ + group_id * sub_out_channel;
|
||||
for (int i = 0; i < out_plane; ++i) {
|
||||
memcpy(dst_ptr, src_ptr, sub_out_channel * sizeof(int8_t));
|
||||
src_ptr += sub_out_channel;
|
||||
dst_ptr += ori_out_channel;
|
||||
}
|
||||
}
|
||||
|
||||
int GroupConvolutionInt8CPUKernel::Run() {
|
||||
ori_in_data_ = reinterpret_cast<int8_t *>(in_tensors().front()->data_c());
|
||||
ori_out_data_ = reinterpret_cast<int8_t *>(out_tensors().front()->data_c());
|
||||
for (int i = 0; i < group_num_; ++i) {
|
||||
// first, separate group conv input into several parts. This step must be in runtime stage.
|
||||
SeparateInput(i);
|
||||
// sun kernels run
|
||||
auto ret = group_convs_.at(i)->Run();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "sub kernel " << i << " execute failed.";
|
||||
return ret;
|
||||
}
|
||||
// post process, concat all outputs of sub-kernels into one output
|
||||
PostConcat(i);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,48 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_GROUP_CONVOLUTION_INT8_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_GROUP_CONVOLUTION_INT8_H_
|
||||
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "nnacl/op_base.h"
|
||||
#include "src/runtime/kernel/arm/fp32/group_convolution_fp32.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class GroupConvolutionInt8CPUKernel : public GroupConvolutionCPUKernel {
|
||||
public:
|
||||
GroupConvolutionInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive,
|
||||
std::vector<kernel::LiteKernel *> group_convs, const int group_num)
|
||||
: GroupConvolutionCPUKernel(parameter, inputs, outputs, ctx, primitive, group_convs, group_num) {
|
||||
} // opParameter(in channel, out channel) in this kernel has been split to groups, if
|
||||
// you want to get real params, multiply in channel / out channel with group num
|
||||
~GroupConvolutionInt8CPUKernel() override { GroupConvolutionCPUKernel::FreeSubKernel(); }
|
||||
|
||||
int Run() override;
|
||||
void SeparateInput(int group_id) override;
|
||||
void PostConcat(int group_id) override;
|
||||
|
||||
private:
|
||||
int8_t *ori_in_data_ = nullptr; // do not free
|
||||
int8_t *ori_out_data_ = nullptr; // do not free
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_GROUP_CONVOLUTION_INT8_H_
|
Loading…
Reference in New Issue