!14586 conv group creator

From: @ling_qiao_min
Reviewed-by: @zhang_xue_tong,@hangangqiang
Signed-off-by: @zhang_xue_tong
This commit is contained in:
mindspore-ci-bot 2021-04-07 11:51:58 +08:00 committed by Gitee
commit d29460667c
14 changed files with 527 additions and 524 deletions

View File

@ -14,7 +14,7 @@
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/group_convolution_fp32.h"
#include "src/runtime/kernel/arm/base/group_convolution.h"
#include "src/runtime/infer_manager.h"
#include "include/errorcode.h"
@ -139,7 +139,7 @@ void GroupConvolutionCPUKernel::SeparateInput(int group_id) {
int sub_in_channel = conv_param_->input_channel_;
int ori_in_channel = sub_in_channel * group_num_;
auto sub_in_data = reinterpret_cast<float *>(group_convs_.at(group_id)->in_tensors().front()->data_c());
float *src_ptr = ori_in_data_ + group_id * sub_in_channel;
float *src_ptr = reinterpret_cast<float *>(ori_in_data_) + group_id * sub_in_channel;
float *dst_ptr = sub_in_data;
for (int i = 0; i < in_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_in_channel * sizeof(float));
@ -155,7 +155,7 @@ void GroupConvolutionCPUKernel::PostConcat(int group_id) {
int ori_out_channel = sub_out_channel * group_num_;
auto sub_out_data = reinterpret_cast<float *>(group_convs_.at(group_id)->out_tensors().front()->data_c());
float *src_ptr = sub_out_data;
float *dst_ptr = ori_out_data_ + group_id * sub_out_channel;
float *dst_ptr = reinterpret_cast<float *>(ori_out_data_) + group_id * sub_out_channel;
for (int i = 0; i < out_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_out_channel * sizeof(float));
src_ptr += sub_out_channel;
@ -164,8 +164,8 @@ void GroupConvolutionCPUKernel::PostConcat(int group_id) {
}
int GroupConvolutionCPUKernel::Run() {
ori_in_data_ = reinterpret_cast<float *>(in_tensors().front()->data_c());
ori_out_data_ = reinterpret_cast<float *>(out_tensors().front()->data_c());
ori_in_data_ = in_tensors().front()->data_c();
ori_out_data_ = out_tensors().front()->data_c();
for (int i = 0; i < group_num_; ++i) {
// first, separate group conv input into several parts. This step must be in runtime stage.
SeparateInput(i);

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GROUP_CONVOLUTION_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GROUP_CONVOLUTION_H_
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_H_
#include <utility>
#include <vector>
@ -47,11 +47,9 @@ class GroupConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
protected:
std::vector<kernel::LiteKernel *> group_convs_;
const int group_num_;
private:
float *ori_in_data_ = nullptr; // do not free
float *ori_out_data_ = nullptr; // do not free
void *ori_in_data_ = nullptr; // do not free
void *ori_out_data_ = nullptr; // do not free
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_GROUP_CONVOLUTION_H_
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_H_

View File

@ -0,0 +1,246 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/base/group_convolution_creator.h"
#include "src/runtime/kernel/arm/base/group_convolution.h"
#include "src/runtime/kernel/arm/int8/convolution_int8_creator.h"
#include "src/runtime/kernel/arm/fp32/convolution_delegate_fp32.h"
#include "src/runtime/kernel/arm/int8/group_convolution_int8.h"
namespace mindspore::kernel {
void CopyTensorQuantParam(lite::Tensor *dst, lite::Tensor *src) {
for (size_t i = 0; i < src->quant_params().size(); i++) {
dst->AddQuantParam(src->quant_params().at(i));
}
}
ConvParameter *CreateNewConvParameter(ConvParameter *parameter) {
auto conv_parameter = reinterpret_cast<ConvParameter *>(malloc(sizeof(ConvParameter)));
if (conv_parameter == nullptr) {
MS_LOG(ERROR) << "Malloc new conv parameter failed.";
return nullptr;
}
memcpy(conv_parameter, parameter, sizeof(ConvParameter));
return conv_parameter;
}
void FreeMemory(ConvParameter *conv_param, const std::vector<lite::Tensor *> &new_inputs,
const std::vector<lite::Tensor *> &new_outputs) {
if (conv_param != nullptr) {
free(conv_param);
}
for (auto &in_tensor : new_inputs) {
delete in_tensor;
}
for (auto &out_tensor : new_outputs) {
delete out_tensor;
}
}
static inline lite::Tensor *TensorMalloc(lite::Tensor *tensor) {
if (tensor->MallocData() != lite::RET_OK) {
delete tensor;
MS_LOG(ERROR) << "malloc tensor data failed.";
return nullptr;
}
return tensor;
}
lite::Tensor *CreateConstTensor(lite::Tensor *tensor, const std::vector<int> &shape, const int index) {
auto new_tensor = new (std::nothrow)
lite::Tensor(tensor->data_type(), shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR);
if (new_tensor == nullptr) {
MS_LOG(ERROR) << "Create new_tensor failed.";
return nullptr;
}
auto ret = new_tensor->MallocData();
if (ret != lite::RET_OK) {
delete new_tensor;
MS_LOG(ERROR) << "Malloc new_tensor failed.";
return nullptr;
}
memcpy(new_tensor->data_c(), reinterpret_cast<char *>(tensor->data_c()) + index * new_tensor->Size(),
new_tensor->Size());
return new_tensor;
}
lite::Tensor *CreateVarTensor(const TensorInfo &tensor_info, bool inferred) {
auto tensor = new (std::nothrow) lite::Tensor();
if (!tensor) {
MS_LOG(ERROR) << "new tensor failed.";
return nullptr;
}
tensor->set_data_type(tensor_info.data_type_);
tensor->set_format(tensor_info.format_);
tensor->set_category(tensor_info.tensor_type_);
if (tensor_info.is_in_) {
tensor->set_shape(tensor_info.shape_);
}
if (inferred) {
// set shape of out tensor
if (!tensor_info.is_in_) {
tensor->set_shape(tensor_info.shape_);
}
return TensorMalloc(tensor);
}
return tensor;
}
/* Class GroupConv Creator Implement Part*/
void GroupConvCreator::CopyQuantParam(std::vector<lite::Tensor *> *tensors) {
for (size_t j = 0; j < origin_inputs_.size(); ++j) {
CopyTensorQuantParam(tensors->at(j), origin_inputs_.at(j));
}
}
bool GroupConvCreator::CheckIfValidPoint(void *ptr) {
if (ptr == nullptr) {
for (auto &sub_conv : group_convs_) {
delete sub_conv;
}
return false;
}
return true;
}
int GroupConvCreator::NewInputTensor(std::vector<lite::Tensor *> *tensors) {
auto in_tensor = CreateVarTensor(
{input_shape_, schema::Format_NHWC, origin_inputs_.at(0)->data_type(), lite::Tensor::Category::VAR, true},
infered_);
if (!CheckIfValidPoint(in_tensor)) {
return lite::RET_ERROR;
}
tensors->emplace_back(in_tensor);
return lite::RET_OK;
}
int GroupConvCreator::NewOutputTensor(std::vector<lite::Tensor *> *tensors, lite::Tensor *output) {
auto out_tensor =
CreateVarTensor({output_shape_, output->format(), output->data_type(), output->category(), false}, infered_);
if (!CheckIfValidPoint(out_tensor)) {
return lite::RET_ERROR;
}
if (is_quant_) {
CopyTensorQuantParam(out_tensor, output);
}
tensors->emplace_back(out_tensor);
return lite::RET_OK;
}
int GroupConvCreator::NewConstTensor(std::vector<lite::Tensor *> *tensors, int group_id) {
std::vector<std::pair<int, std::vector<int>>> const_tensor_list{std::make_pair(kWeightIndex, filter_shape_)};
if (origin_inputs_.size() == 3) {
const_tensor_list.emplace_back(std::make_pair(kBiasIndex, bias_shape_));
}
for (auto &info : const_tensor_list) {
auto const_tensor = CreateConstTensor(origin_inputs_.at(info.first), info.second, group_id);
if (!CheckIfValidPoint(const_tensor)) {
return lite::RET_ERROR;
}
tensors->emplace_back(const_tensor);
}
return lite::RET_OK;
}
void GroupConvCreator::SetShapeOfTensors() {
int new_in_channel = origin_inputs_.at(kWeightIndex)->Channel();
int new_out_channel;
if (conv_param_->group_ == 0) {
MS_LOG(ERROR) << "Divisor 'group' cannot be 0.";
return;
} else {
new_out_channel = origin_inputs_.at(kWeightIndex)->Batch() / conv_param_->group_;
}
/* set shape */
set_filter_shape({new_out_channel, conv_param_->kernel_h_, conv_param_->kernel_w_, new_in_channel});
set_bias_shape({new_out_channel});
if (infered_) {
conv_param_->input_channel_ = new_in_channel;
conv_param_->output_channel_ = new_out_channel;
set_input_shape({origin_inputs_.front()->Batch(), origin_inputs_.front()->Height(), origin_inputs_.front()->Width(),
new_in_channel});
set_output_shape({origin_inputs_.front()->Batch(), origin_outputs_.front()->Height(),
origin_outputs_.front()->Width(), new_out_channel});
}
}
int GroupConvCreator::CreatGroupConv() {
for (int i = 0; i < conv_param_->group_; ++i) {
auto new_conv_parameter = CreateNewConvParameter(conv_param_);
if (!CheckIfValidPoint(new_conv_parameter)) {
return lite::RET_ERROR;
}
// create new input for each group
std::vector<lite::Tensor *> new_inputs;
if (NewInputTensor(&new_inputs) != lite::RET_OK) {
MS_LOG(ERROR) << "new input tensor failed.";
FreeMemory(new_conv_parameter, new_inputs, {});
return lite::RET_ERROR;
}
// const tensor
if (NewConstTensor(&new_inputs, i) != lite::RET_OK) {
MS_LOG(ERROR) << "new const tensor failed.";
FreeMemory(new_conv_parameter, new_inputs, {});
return lite::RET_ERROR;
}
// create new output tensor
std::vector<lite::Tensor *> new_outputs;
for (auto &output : origin_outputs_) {
if (NewOutputTensor(&new_outputs, output) != lite::RET_OK) {
MS_LOG(ERROR) << "new output tensor failed.";
FreeMemory(new_conv_parameter, new_inputs, new_outputs);
return lite::RET_ERROR;
}
}
if (is_quant_) {
CopyQuantParam(&new_inputs);
group_convs_.emplace_back(CpuConvInt8KernelSelect(new_inputs, new_outputs,
reinterpret_cast<OpParameter *>(new_conv_parameter), context_));
} else {
group_convs_.emplace_back(new (std::nothrow) kernel::ConvolutionDelegateCPUKernel(
reinterpret_cast<OpParameter *>(new_conv_parameter), new_inputs, new_outputs, context_));
}
}
return lite::RET_OK;
}
kernel::LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const lite::InnerContext *ctx) {
GroupConvCreator group_conv_creator(inputs, outputs, op_parameter, ctx, false);
group_conv_creator.SetShapeOfTensors();
if (group_conv_creator.CreatGroupConv() != lite::RET_OK) {
MS_LOG(ERROR) << "Create fp32 group conv failed.";
return nullptr;
}
return new (std::nothrow)
GroupConvolutionCPUKernel(op_parameter, inputs, outputs, ctx, group_conv_creator.get_group_conv(),
reinterpret_cast<ConvParameter *>(op_parameter)->group_);
}
kernel::LiteKernel *CpuGroupConvInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const lite::InnerContext *ctx, int group) {
GroupConvCreator group_conv_creator(inputs, outputs, op_parameter, ctx, true);
group_conv_creator.SetShapeOfTensors();
if (group_conv_creator.CreatGroupConv() != lite::RET_OK) {
MS_LOG(ERROR) << "Create int8 group conv failed.";
return nullptr;
}
return new (std::nothrow)
GroupConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx, group_conv_creator.get_group_conv(), group);
}
} // namespace mindspore::kernel

View File

@ -0,0 +1,88 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_CREATOR_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_CREATOR_H_
#include <utility>
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/conv_parameter.h"
namespace mindspore::kernel {
struct TensorInfo {
std::vector<int> shape_;
schema::Format format_;
TypeId data_type_;
lite::Tensor::Category tensor_type_;
bool is_in_;
};
class GroupConvCreator {
public:
GroupConvCreator(std::vector<lite::Tensor *> inputs, std::vector<lite::Tensor *> outputs, OpParameter *op_parameter,
const lite::InnerContext *ctx, bool is_quant)
: origin_inputs_(std::move(inputs)),
origin_outputs_(std::move(outputs)),
context_(ctx),
infered_(op_parameter->infer_flag_),
is_quant_(is_quant) {
conv_param_ = reinterpret_cast<ConvParameter *>(op_parameter);
}
~GroupConvCreator() = default;
public:
void SetShapeOfTensors();
int CreatGroupConv();
std::vector<kernel::LiteKernel *> get_group_conv() { return group_convs_; }
protected:
void set_input_shape(const std::vector<int> &shape) { input_shape_ = shape; }
void set_output_shape(const std::vector<int> &shape) { output_shape_ = shape; }
void set_filter_shape(const std::vector<int> &shape) { filter_shape_ = shape; }
void set_bias_shape(const std::vector<int> &shape) { bias_shape_ = shape; }
void CopyQuantParam(std::vector<lite::Tensor *> *tensors);
bool CheckIfValidPoint(void *ptr);
int NewInputTensor(std::vector<lite::Tensor *> *tensors);
int NewConstTensor(std::vector<lite::Tensor *> *tensors, int group_id);
int NewOutputTensor(std::vector<lite::Tensor *> *tensors, lite::Tensor *output);
private:
std::vector<lite::Tensor *> origin_inputs_;
std::vector<lite::Tensor *> origin_outputs_;
std::vector<kernel::LiteKernel *> group_convs_;
std::vector<int> input_shape_;
std::vector<int> output_shape_;
std::vector<int> filter_shape_;
std::vector<int> bias_shape_;
const lite::InnerContext *context_;
ConvParameter *conv_param_;
bool infered_;
bool is_quant_;
};
LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const lite::InnerContext *ctx);
LiteKernel *CpuGroupConvInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const lite::InnerContext *ctx, int group);
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_GROUP_CONVOLUTION_CREATOR_H_

View File

@ -16,7 +16,6 @@
#include "src/runtime/kernel/arm/fp16/convolution_delegate_fp16.h"
#include <vector>
#include "src/runtime/kernel/arm/fp32/convolution_delegate_fp32.h"
#include "src/runtime/kernel/arm/fp16/convolution_fp16.h"
#include "src/runtime/kernel/arm/fp16/convolution_winograd_fp16.h"
#include "src/runtime/kernel/arm/fp16/convolution_1x1_fp16.h"

View File

@ -1,212 +0,0 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "src/runtime/kernel/arm/fp32/convolution_creator_manager.h"
#include "src/runtime/kernel/arm/fp32/convolution_delegate_fp32.h"
#include "src/runtime/kernel/arm/fp32/group_convolution_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_3x3_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_slidewindow_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_indirect_fp32.h"
#include "src/runtime/kernel/arm/int8/convolution_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_1x1_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_3x3_int8.h"
#include "nnacl/conv_parameter.h"
namespace mindspore::lite {
using mindspore::lite::Format::Format_NHWC;
static inline lite::Tensor *TensorMalloc(lite::Tensor *tensor) {
if (tensor->MallocData() != RET_OK) {
delete tensor;
MS_LOG(ERROR) << "malloc tensor data failed.";
return nullptr;
}
return tensor;
}
lite::Tensor *CreateConstTensor(lite::Tensor *tensor, const std::vector<int> &shape, const int index) {
auto new_tensor =
new (std::nothrow) lite::Tensor(tensor->data_type(), shape, Format_NHWC, lite::Tensor::Category::CONST_TENSOR);
if (new_tensor == nullptr) {
MS_LOG(ERROR) << "Create new_tensor failed.";
return nullptr;
}
auto ret = new_tensor->MallocData();
if (ret != RET_OK) {
delete new_tensor;
MS_LOG(ERROR) << "Malloc new_tensor failed.";
return nullptr;
}
memcpy(new_tensor->data_c(), reinterpret_cast<char *>(tensor->data_c()) + index * new_tensor->Size(),
new_tensor->Size());
return new_tensor;
}
lite::Tensor *CreateVarTensor(const TensorInfo &tensor_info, bool inferred) {
auto tensor = new (std::nothrow) lite::Tensor();
if (!tensor) {
MS_LOG(ERROR) << "new tensor failed.";
return nullptr;
}
tensor->set_data_type(tensor_info.data_type_);
tensor->set_format(tensor_info.format_);
tensor->set_category(tensor_info.tensor_type_);
if (tensor_info.is_in_) {
tensor->set_shape(tensor_info.shape_);
}
if (inferred) {
// set shape of out tensor
if (!tensor_info.is_in_) {
tensor->set_shape(tensor_info.shape_);
}
return TensorMalloc(tensor);
}
return tensor;
}
/* Kernel creator func part */
kernel::LiteKernel *CpuConvInt8KernelSelect(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx) {
auto conv_param = reinterpret_cast<ConvParameter *>(op_parameter);
kernel::LiteKernel *kernel = nullptr;
if (conv_param->kernel_h_ == 3 && conv_param->kernel_w_ == 3 && conv_param->stride_h_ == 1 &&
conv_param->stride_w_ == 1 && conv_param->dilation_h_ == 1 && conv_param->dilation_w_ == 1) {
#ifdef ENABLE_ARM64
if (mindspore::lite::IsSupportSDot()) {
kernel = new (std::nothrow) kernel::ConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx);
} else {
kernel = new (std::nothrow) kernel::Convolution3x3Int8CPUKernel(op_parameter, inputs, outputs, ctx);
}
#else
kernel = new (std::nothrow) kernel::Convolution3x3Int8CPUKernel(op_parameter, inputs, outputs, ctx);
#endif
} else if (conv_param->kernel_h_ == 1 && conv_param->kernel_w_ == 1) {
kernel = new (std::nothrow) kernel::Convolution1x1Int8CPUKernel(op_parameter, inputs, outputs, ctx);
} else {
kernel = new (std::nothrow) kernel::ConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx);
}
return kernel;
}
kernel::LiteKernel *DispatchConvDw(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const InnerContext *ctx) {
auto conv_param = reinterpret_cast<ConvParameter *>(opParameter);
kernel::LiteKernel *kernel = nullptr;
if (opParameter != nullptr && opParameter->infer_flag_) {
#if defined(ENABLE_ARM) || (defined(ENABLE_SSE) && !defined(ENABLE_AVX))
if (CheckConvDw1DWinograd(conv_param, ctx->thread_num_)) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwise3x3CPUKernel(opParameter, inputs, outputs, ctx);
}
#endif
#if defined(ENABLE_ARM64) || defined(ENABLE_AVX)
if (kernel == nullptr && CheckConvDwUseIndirectBuffer(conv_param)) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseIndirectCPUKernel(opParameter, inputs, outputs, ctx);
}
#endif
if (kernel == nullptr && conv_param->input_channel_ < 32) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseSWCPUKernel(opParameter, inputs, outputs, ctx);
}
}
if (kernel == nullptr) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseCPUKernel(opParameter, inputs, outputs, ctx);
}
return kernel;
}
kernel::LiteKernel *DispatchGroupConv(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx) {
GroupConvCreator group_conv_creator(inputs, outputs, op_parameter, ctx, false);
group_conv_creator.SetShapeOfTensors();
if (group_conv_creator.CreatGroupConv() != RET_OK) {
MS_LOG(ERROR) << "Create group conv failed.";
return nullptr;
}
return new (std::nothrow)
kernel::GroupConvolutionCPUKernel(op_parameter, inputs, outputs, ctx, group_conv_creator.get_group_conv(),
reinterpret_cast<ConvParameter *>(op_parameter)->group_);
}
/* Class GroupConv Creator Implement Part*/
void GroupConvCreator::SetShapeOfTensors() {
int new_in_channel = origin_inputs_.at(kWeightIndex)->Channel();
int new_out_channel;
if (conv_param_->group_ == 0) {
MS_LOG(ERROR) << "Divisor 'group' cannot be 0.";
return;
} else {
new_out_channel = origin_inputs_.at(kWeightIndex)->Batch() / conv_param_->group_;
}
/* set shape */
set_filter_shape({new_out_channel, conv_param_->kernel_h_, conv_param_->kernel_w_, new_in_channel});
set_bias_shape({new_out_channel});
if (infered_) {
conv_param_->input_channel_ = new_in_channel;
conv_param_->output_channel_ = new_out_channel;
set_input_shape({origin_inputs_.front()->Batch(), origin_inputs_.front()->Height(), origin_inputs_.front()->Width(),
new_in_channel});
set_output_shape({origin_inputs_.front()->Batch(), origin_outputs_.front()->Height(),
origin_outputs_.front()->Width(), new_out_channel});
}
}
int GroupConvCreator::CreatGroupConv() {
for (int i = 0; i < conv_param_->group_; ++i) {
auto new_conv_parameter = CreateNewConvParameter(conv_param_);
if (!CheckIfValidPoint(new_conv_parameter)) {
return RET_ERROR;
}
// create new input for each group
std::vector<lite::Tensor *> new_inputs;
if (NewInputTensor(&new_inputs) != RET_OK) {
MS_LOG(ERROR) << "new input tensor failed.";
FreeMemory(new_conv_parameter, new_inputs, {});
return RET_ERROR;
}
// const tensor
if (NewConstTensor(&new_inputs, i) != RET_OK) {
MS_LOG(ERROR) << "new const tensor failed.";
FreeMemory(new_conv_parameter, new_inputs, {});
return RET_ERROR;
}
// create new output tensor
std::vector<lite::Tensor *> new_outputs;
for (auto &output : origin_outputs_) {
if (NewOutputTensor(&new_outputs, output) != RET_OK) {
MS_LOG(ERROR) << "new output tensor failed.";
FreeMemory(new_conv_parameter, new_inputs, new_outputs);
return RET_ERROR;
}
}
if (is_quant_) {
CopyQuantParam(&new_inputs);
group_convs_.emplace_back(CpuConvInt8KernelSelect(new_inputs, new_outputs,
reinterpret_cast<OpParameter *>(new_conv_parameter), context_));
} else {
group_convs_.emplace_back(new (std::nothrow) kernel::ConvolutionDelegateCPUKernel(
reinterpret_cast<OpParameter *>(new_conv_parameter), new_inputs, new_outputs, context_));
}
}
return RET_OK;
}
} // namespace mindspore::lite

View File

@ -1,180 +0,0 @@
/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CONVOLUTION_CREATOR_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CONVOLUTION_CREATOR_H_
#include <utility>
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/conv_parameter.h"
namespace mindspore::lite {
using Category = lite::Tensor::Category;
using Format = mindspore::schema::Format;
struct TensorInfo {
std::vector<int> shape_;
Format format_;
TypeId data_type_;
Category tensor_type_;
bool is_in_;
};
inline void CopyTensorQuantParam(lite::Tensor *dst, lite::Tensor *src) {
for (size_t i = 0; i < src->quant_params().size(); i++) {
dst->AddQuantParam(src->quant_params().at(i));
}
}
inline ConvParameter *CreateNewConvParameter(ConvParameter *parameter) {
auto conv_parameter = reinterpret_cast<ConvParameter *>(malloc(sizeof(ConvParameter)));
if (conv_parameter == nullptr) {
MS_LOG(ERROR) << "Malloc new conv parameter failed.";
return nullptr;
}
memcpy(conv_parameter, parameter, sizeof(ConvParameter));
return conv_parameter;
}
inline void FreeMemory(ConvParameter *conv_param, const std::vector<lite::Tensor *> &new_inputs,
const std::vector<lite::Tensor *> &new_outputs) {
if (conv_param != nullptr) {
free(conv_param);
}
for (auto &in_tensor : new_inputs) {
delete in_tensor;
}
for (auto &out_tensor : new_outputs) {
delete out_tensor;
}
}
lite::Tensor *CreateVarTensor(const TensorInfo &tensor_info, bool inferred);
lite::Tensor *CreateConstTensor(lite::Tensor *tensor, const std::vector<int> &shape, int index);
kernel::LiteKernel *CpuConvInt8KernelSelect(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx);
kernel::LiteKernel *DispatchConvDw(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const InnerContext *ctx);
kernel::LiteKernel *DispatchGroupConv(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx);
class GroupConvCreator {
public:
GroupConvCreator(std::vector<lite::Tensor *> inputs, std::vector<lite::Tensor *> outputs, OpParameter *op_parameter,
const InnerContext *ctx, bool is_quant)
: origin_inputs_(std::move(inputs)),
origin_outputs_(std::move(outputs)),
context_(ctx),
infered_(op_parameter->infer_flag_),
is_quant_(is_quant) {
conv_param_ = reinterpret_cast<ConvParameter *>(op_parameter);
}
~GroupConvCreator() = default;
public:
void SetShapeOfTensors();
void set_input_shape(const std::vector<int> &shape) { input_shape_ = shape; }
void set_output_shape(const std::vector<int> &shape) { output_shape_ = shape; }
void set_filter_shape(const std::vector<int> &shape) { filter_shape_ = shape; }
void set_bias_shape(const std::vector<int> &shape) { bias_shape_ = shape; }
std::vector<kernel::LiteKernel *> get_group_conv() { return group_convs_; }
int CreatGroupConv();
protected:
void FreeSubConv() {
for (auto &sub_conv : group_convs_) {
delete sub_conv;
}
}
bool CheckIfValidPoint(void *ptr) {
if (ptr == nullptr) {
MS_LOG(ERROR) << "pointer is nullptr.";
FreeSubConv();
return false;
}
return true;
}
int NewInputTensor(std::vector<lite::Tensor *> *tensors) {
auto in_tensor = CreateVarTensor(
{input_shape_, Format::Format_NHWC, origin_inputs_.at(0)->data_type(), Category::VAR, true}, infered_);
if (!CheckIfValidPoint(in_tensor)) {
return RET_ERROR;
}
tensors->emplace_back(in_tensor);
return RET_OK;
}
int NewConstTensor(std::vector<lite::Tensor *> *tensors, int group_id) {
std::vector<std::pair<int, std::vector<int>>> const_tensor_list{std::make_pair(kWeightIndex, filter_shape_)};
if (origin_inputs_.size() == 3) {
const_tensor_list.emplace_back(std::make_pair(kBiasIndex, bias_shape_));
}
for (auto &info : const_tensor_list) {
auto const_tensor = CreateConstTensor(origin_inputs_.at(info.first), info.second, group_id);
if (!CheckIfValidPoint(const_tensor)) {
return RET_ERROR;
}
tensors->emplace_back(const_tensor);
}
return RET_OK;
}
int NewOutputTensor(std::vector<lite::Tensor *> *tensors, lite::Tensor *output) {
auto out_tensor =
CreateVarTensor({output_shape_, output->format(), output->data_type(), output->category(), false}, infered_);
if (!CheckIfValidPoint(out_tensor)) {
return RET_ERROR;
}
if (is_quant_) {
CopyTensorQuantParam(out_tensor, output);
}
tensors->emplace_back(out_tensor);
return RET_OK;
}
void CopyQuantParam(std::vector<lite::Tensor *> *tensors) {
for (size_t j = 0; j < origin_inputs_.size(); ++j) {
CopyTensorQuantParam(tensors->at(j), origin_inputs_.at(j));
}
}
private:
std::vector<lite::Tensor *> origin_inputs_;
std::vector<lite::Tensor *> origin_outputs_;
std::vector<kernel::LiteKernel *> group_convs_;
std::vector<int> input_shape_;
std::vector<int> output_shape_;
std::vector<int> filter_shape_;
std::vector<int> bias_shape_;
const InnerContext *context_;
ConvParameter *conv_param_;
bool infered_;
bool is_quant_;
};
} // namespace mindspore::lite
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CONVOLUTION_CREATOR_H_

View File

@ -14,12 +14,16 @@
* limitations under the License.
*/
#include "src/kernel_registry.h"
#include "src/runtime/kernel/arm/fp32/convolution_delegate_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_creator_manager.h"
#include "src/kernel_registry.h"
#include "src/runtime/kernel/arm/fp32/convolution_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_1x1_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_winograd_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_3x3_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_slidewindow_fp32.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_indirect_fp32.h"
#include "src/runtime/kernel/arm/base/group_convolution_creator.h"
#include "schema/model_generated.h"
#include "include/errorcode.h"
@ -157,6 +161,32 @@ kernel::LiteKernel *ConvolutionDelegateCPUKernel::CpuConvFp32KernelSelect() {
return kernel;
}
kernel::LiteKernel *DispatchConvDw(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const InnerContext *ctx) {
auto conv_param = reinterpret_cast<ConvParameter *>(opParameter);
kernel::LiteKernel *kernel = nullptr;
if (opParameter != nullptr && opParameter->infer_flag_) {
#if defined(ENABLE_ARM) || (defined(ENABLE_SSE) && !defined(ENABLE_AVX))
if (CheckConvDw1DWinograd(conv_param, ctx->thread_num_)) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwise3x3CPUKernel(opParameter, inputs, outputs, ctx);
}
#endif
#if defined(ENABLE_ARM64) || defined(ENABLE_AVX)
if (kernel == nullptr && CheckConvDwUseIndirectBuffer(conv_param)) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseIndirectCPUKernel(opParameter, inputs, outputs, ctx);
}
#endif
if (kernel == nullptr && conv_param->input_channel_ < 32) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseSWCPUKernel(opParameter, inputs, outputs, ctx);
}
}
if (kernel == nullptr) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseCPUKernel(opParameter, inputs, outputs, ctx);
}
return kernel;
}
/* creator func */
kernel::LiteKernel *CpuConvFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
@ -172,7 +202,7 @@ kernel::LiteKernel *CpuConvFp32KernelCreator(const std::vector<lite::Tensor *> &
} else if (conv_param->group_ == conv_param->input_channel_ && conv_param->group_ == conv_param->output_channel_) {
kernel = DispatchConvDw(inputs, outputs, op_parameter, ctx);
} else {
kernel = DispatchGroupConv(inputs, outputs, op_parameter, ctx);
kernel = CpuGroupConvFp32KernelCreator(inputs, outputs, op_parameter, ctx);
}
if (kernel == nullptr) {

View File

@ -18,7 +18,6 @@
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/fp32/convolution_creator_manager.h"
#include "nnacl/conv_parameter.h"
#include "nnacl/op_base.h"

View File

@ -19,24 +19,13 @@
#include "nnacl/int8/conv_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/kernel/arm/fp32/convolution_creator_manager.h"
#include "src/runtime/kernel/arm/int8/convolution_1x1_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_3x3_int8.h"
#include "src/runtime/kernel/arm/int8/group_convolution_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_depthwise_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_depthwise_3x3_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_depthwise_slidewindow_int8.h"
#include "src/runtime/runtime_api.h"
#ifdef ENABLE_ARM64
#include "src/runtime/kernel/arm/int8/opt_op_handler.h"
#endif
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Conv2DFusion;
using mindspore::schema::Format::Format_NHWC;
namespace mindspore::kernel {
void ConvolutionInt8CPUKernel::CheckSupportOptimize() {
@ -243,73 +232,4 @@ int ConvolutionInt8CPUKernel::Run() {
FreeTmpBuffer();
return RET_OK;
}
kernel::LiteKernel *CpuGroupConvInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx, int group) {
lite::GroupConvCreator group_conv_creator(inputs, outputs, op_parameter, ctx, true);
group_conv_creator.SetShapeOfTensors();
if (group_conv_creator.CreatGroupConv() != RET_OK) {
MS_LOG(ERROR) << "Create group conv failed.";
return nullptr;
}
return new (std::nothrow)
GroupConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx, group_conv_creator.get_group_conv(), group);
}
kernel::LiteKernel *CpuConvDwInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx, const kernel::KernelKey &desc) {
auto conv_param = reinterpret_cast<ConvParameter *>(op_parameter);
kernel::LiteKernel *kernel = nullptr;
auto act_quant_size =
MSMAX(inputs.at(kInputIndex)->quant_params().size(), outputs.at(kOutputIndex)->quant_params().size());
if (act_quant_size == 1) { // per tensor
if (CheckConvDwUse3X3(conv_param) && conv_param->input_channel_ % C8NUM == 0) {
#ifdef ENABLE_ARM64
kernel = new (std::nothrow) kernel::ConvolutionDepthwise3x3Int8CPUKernel(op_parameter, inputs, outputs, ctx);
#endif
}
if (kernel == nullptr) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseInt8CPUKernel(op_parameter, inputs, outputs, ctx);
}
} else { // per channel
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseSWInt8CPUKernel(op_parameter, inputs, outputs, ctx);
}
return kernel;
}
kernel::LiteKernel *CpuConvInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx, const kernel::KernelKey &desc) {
MS_ASSERT(op_parameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_Conv2DFusion);
auto conv_param = reinterpret_cast<ConvParameter *>(op_parameter);
kernel::LiteKernel *kernel = nullptr;
if (conv_param->group_ == 1) {
kernel = CpuConvInt8KernelSelect(inputs, outputs, op_parameter, ctx);
} else if (conv_param->group_ == conv_param->input_channel_ && conv_param->group_ == conv_param->output_channel_) {
kernel = CpuConvDwInt8KernelCreator(inputs, outputs, op_parameter, ctx, desc);
} else {
MS_ASSERT(conv_param->group_ > 1);
kernel = CpuGroupConvInt8KernelCreator(inputs, outputs, op_parameter, ctx, conv_param->group_);
}
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel is nullptr.";
free(op_parameter);
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
delete kernel;
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Conv2DFusion, CpuConvInt8KernelCreator)
} // namespace mindspore::kernel

View File

@ -0,0 +1,118 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/int8/convolution_int8_creator.h"
#include "src/runtime/kernel/arm/int8/convolution_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_1x1_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_3x3_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_depthwise_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_depthwise_3x3_int8.h"
#include "src/runtime/kernel/arm/int8/convolution_depthwise_slidewindow_int8.h"
#include "src/runtime/kernel/arm/base/group_convolution_creator.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/runtime_api.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Conv2DFusion;
using mindspore::schema::Format::Format_NHWC;
namespace mindspore::kernel {
kernel::LiteKernel *CpuConvDwInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx, const kernel::KernelKey &desc) {
auto conv_param = reinterpret_cast<ConvParameter *>(op_parameter);
kernel::LiteKernel *kernel = nullptr;
auto act_quant_size =
MSMAX(inputs.at(kInputIndex)->quant_params().size(), outputs.at(kOutputIndex)->quant_params().size());
if (act_quant_size == 1) { // per tensor
if (CheckConvDwUse3X3(conv_param) && conv_param->input_channel_ % C8NUM == 0) {
#ifdef ENABLE_ARM64
kernel = new (std::nothrow) kernel::ConvolutionDepthwise3x3Int8CPUKernel(op_parameter, inputs, outputs, ctx);
#endif
}
if (kernel == nullptr) {
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseInt8CPUKernel(op_parameter, inputs, outputs, ctx);
}
} else { // per channel
kernel = new (std::nothrow) kernel::ConvolutionDepthwiseSWInt8CPUKernel(op_parameter, inputs, outputs, ctx);
}
return kernel;
}
/* Kernel creator func part */
kernel::LiteKernel *CpuConvInt8KernelSelect(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx) {
auto conv_param = reinterpret_cast<ConvParameter *>(op_parameter);
kernel::LiteKernel *kernel = nullptr;
if (conv_param->kernel_h_ == 3 && conv_param->kernel_w_ == 3 && conv_param->stride_h_ == 1 &&
conv_param->stride_w_ == 1 && conv_param->dilation_h_ == 1 && conv_param->dilation_w_ == 1) {
#ifdef ENABLE_ARM64
if (mindspore::lite::IsSupportSDot()) {
kernel = new (std::nothrow) ConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx);
} else {
kernel = new (std::nothrow) Convolution3x3Int8CPUKernel(op_parameter, inputs, outputs, ctx);
}
#else
kernel = new (std::nothrow) kernel::Convolution3x3Int8CPUKernel(op_parameter, inputs, outputs, ctx);
#endif
} else if (conv_param->kernel_h_ == 1 && conv_param->kernel_w_ == 1) {
kernel = new (std::nothrow) Convolution1x1Int8CPUKernel(op_parameter, inputs, outputs, ctx);
} else {
kernel = new (std::nothrow) ConvolutionInt8CPUKernel(op_parameter, inputs, outputs, ctx);
}
return kernel;
}
kernel::LiteKernel *CpuConvInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const InnerContext *ctx, const kernel::KernelKey &desc) {
MS_ASSERT(op_parameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_Conv2DFusion);
auto conv_param = reinterpret_cast<ConvParameter *>(op_parameter);
kernel::LiteKernel *kernel = nullptr;
if (conv_param->group_ == 1) {
kernel = CpuConvInt8KernelSelect(inputs, outputs, op_parameter, ctx);
} else if (conv_param->group_ == conv_param->input_channel_ && conv_param->group_ == conv_param->output_channel_) {
kernel = CpuConvDwInt8KernelCreator(inputs, outputs, op_parameter, ctx, desc);
} else {
MS_ASSERT(conv_param->group_ > 1);
kernel = CpuGroupConvInt8KernelCreator(inputs, outputs, op_parameter, ctx, conv_param->group_);
}
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel is nullptr.";
free(op_parameter);
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
delete kernel;
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Conv2DFusion, CpuConvInt8KernelCreator)
} // namespace mindspore::kernel

View File

@ -0,0 +1,29 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CONVOLUTION_INT8_CREATOR_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CONVOLUTION_INT8_CREATOR_H_
#include <vector>
#include "nnacl/op_base.h"
#include "src/lite_kernel.h"
namespace mindspore::kernel {
LiteKernel *CpuConvInt8KernelSelect(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const lite::InnerContext *ctx);
}
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CONVOLUTION_INT8_CREATOR_H_

View File

@ -15,14 +15,6 @@
*/
#include "src/runtime/kernel/arm/int8/group_convolution_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
void GroupConvolutionInt8CPUKernel::SeparateInput(int group_id) {
@ -30,7 +22,7 @@ void GroupConvolutionInt8CPUKernel::SeparateInput(int group_id) {
int sub_in_channel = conv_param_->input_channel_;
int ori_in_channel = sub_in_channel * group_num_;
auto sub_in_data = reinterpret_cast<int8_t *>(group_convs_.at(group_id)->in_tensors().front()->data_c());
int8_t *src_ptr = ori_in_data_ + group_id * sub_in_channel;
int8_t *src_ptr = reinterpret_cast<int8_t *>(ori_in_data_) + group_id * sub_in_channel;
int8_t *dst_ptr = sub_in_data;
for (int i = 0; i < in_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_in_channel * sizeof(int8_t));
@ -45,29 +37,11 @@ void GroupConvolutionInt8CPUKernel::PostConcat(int group_id) {
int ori_out_channel = sub_out_channel * group_num_;
auto sub_out_data = reinterpret_cast<int8_t *>(group_convs_.at(group_id)->out_tensors().front()->data_c());
int8_t *src_ptr = sub_out_data;
int8_t *dst_ptr = ori_out_data_ + group_id * sub_out_channel;
int8_t *dst_ptr = reinterpret_cast<int8_t *>(ori_out_data_) + group_id * sub_out_channel;
for (int i = 0; i < out_plane; ++i) {
memcpy(dst_ptr, src_ptr, sub_out_channel * sizeof(int8_t));
src_ptr += sub_out_channel;
dst_ptr += ori_out_channel;
}
}
int GroupConvolutionInt8CPUKernel::Run() {
ori_in_data_ = reinterpret_cast<int8_t *>(in_tensors().front()->data_c());
ori_out_data_ = reinterpret_cast<int8_t *>(out_tensors().front()->data_c());
for (int i = 0; i < group_num_; ++i) {
// first, separate group conv input into several parts. This step must be in runtime stage.
SeparateInput(i);
// sun kernels run
auto ret = group_convs_.at(i)->Run();
if (ret != RET_OK) {
MS_LOG(ERROR) << "sub kernel " << i << " execute failed.";
return ret;
}
// post process, concat all outputs of sub-kernels into one output
PostConcat(i);
}
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -21,7 +21,7 @@
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/op_base.h"
#include "src/runtime/kernel/arm/fp32/group_convolution_fp32.h"
#include "src/runtime/kernel/arm/base/group_convolution.h"
namespace mindspore::kernel {
class GroupConvolutionInt8CPUKernel : public GroupConvolutionCPUKernel {
@ -32,14 +32,8 @@ class GroupConvolutionInt8CPUKernel : public GroupConvolutionCPUKernel {
: GroupConvolutionCPUKernel(parameter, inputs, outputs, ctx, std::move(group_convs), group_num) {
} // opParameter(in channel, out channel) in this kernel has been split to groups, if
// you want to get real params, multiply in channel / out channel with group num
int Run() override;
void SeparateInput(int group_id) override;
void PostConcat(int group_id) override;
private:
int8_t *ori_in_data_ = nullptr; // do not free
int8_t *ori_out_data_ = nullptr; // do not free
};
} // namespace mindspore::kernel