forked from mindspore-Ecosystem/mindspore
mod comment
This commit is contained in:
parent
a60ed1a957
commit
cebfbdd723
|
@ -12,7 +12,7 @@ mindspore.export
|
|||
**参数:**
|
||||
|
||||
- **net** (Cell) – MindSpore网络结构。
|
||||
- **inputs** (Tensor) – 网络的输入,如果网络有多个输入,需要将张量组成元组。
|
||||
- **inputs** (Union[Tensor, Dasaset) – 网络的输入,如果网络有多个输入,需要一同传入。当传入的类型为 `Dataset` 时,将会把数据预处理行为同步保存起来。需要手动调整batch的大小,当前仅支持获取 `Dataset` 的 `image` 列。
|
||||
- **file_name** (str) – 导出模型的文件名称。
|
||||
- **file_format** (str) – MindSpore目前支持导出"AIR","ONNX"和"MINDIR"格式的模型。
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
**参数:**
|
||||
|
||||
- **per_print_times** (int) - 表示每隔多少个step打印一次loss。默认值:1。
|
||||
- **has_trained_epoch** (int) - 表示已经训练了多少个epoch,如何设置了该参数,LossMonitor将监控该数值之后epoch的loss值。默认值:0。
|
||||
- **has_trained_epoch** (int) - 表示已经训练了多少个epoch,如果设置了该参数,LossMonitor将监控该数值之后epoch的loss值。默认值:0。
|
||||
|
||||
**异常:**
|
||||
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
.. note::
|
||||
在分布式训练场景下,请为每个训练进程指定不同的目录来保存checkpoint文件。否则,可能会训练失败。
|
||||
如何在 `model` 方法中使用此回调函数,默认将会把优化器中的参数保存到checkpoint文件中。
|
||||
|
||||
**参数:**
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
#include "debug/env_config_parser.h"
|
||||
#include "mindspore/core/utils/log_adapter.h"
|
||||
|
||||
const int maxNameLength = 32;
|
||||
const int maxNameLength = 64;
|
||||
namespace mindspore {
|
||||
class BaseRecorder {
|
||||
public:
|
||||
|
|
|
@ -344,6 +344,8 @@ class ModelCheckpoint(Callback):
|
|||
Note:
|
||||
In the distributed training scenario, please specify different directories for each training process
|
||||
to save the checkpoint file. Otherwise, the training may fail.
|
||||
If this callback is used in the `model` function, the checkpoint file will saved
|
||||
parameters of the optimizer by default.
|
||||
|
||||
Args:
|
||||
prefix (str): The prefix name of checkpoint files. Default: "CKP".
|
||||
|
|
|
@ -36,7 +36,7 @@ class LambdaCallback(Callback):
|
|||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> from mindspore.train.callback import History
|
||||
>>> from mindspore.train.callback import LambdaCallback
|
||||
>>> from mindspore import Model, nn
|
||||
>>> data = {"x": np.float32(np.random.rand(64, 10)), "y": np.random.randint(0, 5, (64,))}
|
||||
>>> train_dataset = ds.NumpySlicesDataset(data=data).batch(32)
|
||||
|
|
|
@ -172,7 +172,7 @@ class Model:
|
|||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
>>> # For details about how to build the dataset, please refer to the function `create_dataset` in tutorial
|
||||
>>> # document on the official website:
|
||||
>>> # https://www.mindspore.cn/tutorials/zh-CN/master/quick_start.html
|
||||
>>> # https://www.mindspore.cn/tutorials/zh-CN/master/beginner/quick_start.html
|
||||
>>> dataset = create_custom_dataset()
|
||||
>>> model.train(2, dataset)
|
||||
"""
|
||||
|
@ -953,8 +953,8 @@ class Model:
|
|||
|
||||
if context.get_context("device_target") == "CPU" and dataset_sink_mode:
|
||||
dataset_sink_mode = False
|
||||
logger.warning("CPU cannot support dataset sink mode currently."
|
||||
"So the evaluating process will be performed with dataset non-sink mode.")
|
||||
logger.info("CPU cannot support dataset sink mode currently."
|
||||
"So the evaluating process will be performed with dataset non-sink mode.")
|
||||
|
||||
with _CallbackManager(callbacks) as list_callback:
|
||||
if dataset_sink_mode:
|
||||
|
|
|
@ -785,8 +785,8 @@ def export(net, *inputs, file_name, file_format='AIR', **kwargs):
|
|||
|
||||
Args:
|
||||
net (Cell): MindSpore network.
|
||||
inputs (Union[Tensor, tuple(Tensor), Dataset]): While the input type is Tensor, it represents the inputs
|
||||
of the `net`, if the network has multiple inputs, incoming tuple(Tensor). While its type is Dataset,
|
||||
inputs (Union[Tensor, Dataset]): While the input type is Tensor, it represents the inputs
|
||||
of the `net`, if the network has multiple inputs, set them together. While its type is Dataset,
|
||||
it represents the preprocess behavior of the `net`, data preprocess operations will be serialized.
|
||||
In second situation, you should adjust batch size of dataset script manually which will impact on
|
||||
the batch size of 'net' input. Only supports parse "image" column from dataset currently.
|
||||
|
|
Loading…
Reference in New Issue