forked from mindspore-Ecosystem/mindspore
add reversev2 data type and test case
This commit is contained in:
parent
b3da2ebeb5
commit
cdd9e64d67
|
@ -221,6 +221,7 @@ Array Methods
|
|||
mindspore.Tensor.reshape
|
||||
mindspore.Tensor.resize
|
||||
mindspore.Tensor.reverse
|
||||
mindspore.Tensor.reverse_sequence
|
||||
mindspore.Tensor.scatter_add
|
||||
mindspore.Tensor.scatter_div
|
||||
mindspore.Tensor.scatter_max
|
||||
|
|
|
@ -131,9 +131,18 @@ std::vector<std::pair<KernelAttr, ReverseV2GpuKernelMod::ReverseV2LaunchFunc>> R
|
|||
{KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
&ReverseV2GpuKernelMod::LaunchKernel<float>},
|
||||
|
||||
{KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
&ReverseV2GpuKernelMod::LaunchKernel<double>},
|
||||
|
||||
{KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
&ReverseV2GpuKernelMod::LaunchKernel<uint8_t>},
|
||||
|
||||
{KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
&ReverseV2GpuKernelMod::LaunchKernel<uint16_t>},
|
||||
|
||||
{KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
|
||||
&ReverseV2GpuKernelMod::LaunchKernel<int8_t>},
|
||||
|
||||
{KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
|
||||
&ReverseV2GpuKernelMod::LaunchKernel<int16_t>},
|
||||
|
||||
|
|
|
@ -63,10 +63,22 @@ template CUDA_LIB_EXPORT void CalReverseV2<float>(const float* input, float* out
|
|||
const int64_t* strides, const int64_t* axis, size_t input_size,
|
||||
size_t axis_size, cudaStream_t cuda_stream);
|
||||
|
||||
template CUDA_LIB_EXPORT void CalReverseV2<double>(const double* input, double* output, const size_t* input_shape,
|
||||
const int64_t* strides, const int64_t* axis, size_t input_size,
|
||||
size_t axis_size, cudaStream_t cuda_stream);
|
||||
|
||||
template CUDA_LIB_EXPORT void CalReverseV2<uint8_t>(const uint8_t* input, uint8_t* output, const size_t* input_shape,
|
||||
const int64_t* strides, const int64_t* axis, size_t input_size,
|
||||
size_t axis_size, cudaStream_t cuda_stream);
|
||||
|
||||
template CUDA_LIB_EXPORT void CalReverseV2<uint16_t>(const uint16_t* input, uint16_t* output, const size_t* input_shape,
|
||||
const int64_t* strides, const int64_t* axis, size_t input_size,
|
||||
size_t axis_size, cudaStream_t cuda_stream);
|
||||
|
||||
template CUDA_LIB_EXPORT void CalReverseV2<int8_t>(const int8_t* input, int8_t* output, const size_t* input_shape,
|
||||
const int64_t* strides, const int64_t* axis, size_t input_size,
|
||||
size_t axis_size, cudaStream_t cuda_stream);
|
||||
|
||||
template CUDA_LIB_EXPORT void CalReverseV2<int16_t>(const int16_t* input, int16_t* output, const size_t* input_shape,
|
||||
const int64_t* strides, const int64_t* axis, size_t input_size,
|
||||
size_t axis_size, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -17,6 +17,7 @@ import pytest
|
|||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore as ms
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
@ -69,6 +70,18 @@ def test_reverse_v2_float32():
|
|||
reverse_v2_1d(np.float32)
|
||||
reverse_v2_3d(np.float32)
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reverse_v2_float64():
|
||||
"""
|
||||
Feature: test ReverseV2 with using float64.
|
||||
Description: input input_x and axis, test the output value
|
||||
Expectation: the result match with expect.
|
||||
"""
|
||||
reverse_v2_1d(np.float64)
|
||||
reverse_v2_3d(np.float64)
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -76,6 +89,30 @@ def test_reverse_v2_uint8():
|
|||
reverse_v2_1d(np.uint8)
|
||||
reverse_v2_3d(np.uint8)
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reverse_v2_uint16():
|
||||
"""
|
||||
Feature: test ReverseV2 with using uint16.
|
||||
Description: input input_x and axis, test the output value
|
||||
Expectation: the result match with expect.
|
||||
"""
|
||||
reverse_v2_1d(np.uint16)
|
||||
reverse_v2_3d(np.uint16)
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reverse_v2_int8():
|
||||
"""
|
||||
Feature: test ReverseV2 with using int8.
|
||||
Description: input input_x and axis, test the output value
|
||||
Expectation: the result match with expect.
|
||||
"""
|
||||
reverse_v2_1d(np.int8)
|
||||
reverse_v2_3d(np.int8)
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -113,3 +150,33 @@ def test_reverse_v2_invalid_axis():
|
|||
reverse_v2_net = ReverseV2Net((-2, -1, 3))
|
||||
_ = reverse_v2_net(x)
|
||||
assert "'axis' cannot contain duplicate dimensions" in str(info.value)
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reverse_v2_tensor_api():
|
||||
"""
|
||||
Feature: ReverseV2 GPU operation
|
||||
Description: input axis, test the output value
|
||||
Expectation: the values match the predefined values
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
input_x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), ms.int32)
|
||||
output = input_x.reverse(axis=[1])
|
||||
expected = np.array([[4, 3, 2, 1], [8, 7, 6, 5]]).astype(np.int32)
|
||||
assert np.array_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reverse_v2_functional_api():
|
||||
"""
|
||||
Feature: ReverseV2 GPU operation
|
||||
Description: input input_x and axis, test the output value
|
||||
Expectation: the values match the predefined values
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
input_x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), ms.int32)
|
||||
output = ms.ops.reverse(input_x, axis=[1])
|
||||
expected = np.array([[4, 3, 2, 1], [8, 7, 6, 5]]).astype(np.int32)
|
||||
assert np.array_equal(output.asnumpy(), expected)
|
||||
|
|
Loading…
Reference in New Issue