forked from mindspore-Ecosystem/mindspore
add maxpool_with_argmax/grad cuda kernel
This commit is contained in:
parent
9dc23eeb98
commit
ca881ec03e
|
@ -0,0 +1,226 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include "maxpool_with_argmax_grad_impl.cuh"
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
#include "include/cuda_fp16.h"
|
||||
|
||||
template <typename T, typename S>
|
||||
__global__ void MaxPoolWithArgmaxGrad(const T* x,
|
||||
const T* dy,
|
||||
const S* index,
|
||||
const int n,
|
||||
const int c,
|
||||
const int xHeight,
|
||||
const int xWidth,
|
||||
const int dyHeight,
|
||||
const int dyWidth,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
const int xNCHW,
|
||||
const int xCHW,
|
||||
const int xHW,
|
||||
const int dyCHW,
|
||||
const int dyHW,
|
||||
T* dx) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
pos < (xNCHW);
|
||||
pos += blockDim.x * gridDim.x) {
|
||||
const int posn = pos / xCHW;
|
||||
const int posc = pos / xHW % c;
|
||||
const int posh = pos / xHeight % xHeight;
|
||||
const int posw = pos % xWidth;
|
||||
const S posIdx = posh*xWidth + posw;
|
||||
int hstart = posh+padTop;
|
||||
if (hstart < windowHeight) {
|
||||
hstart = 0;
|
||||
} else {
|
||||
hstart = (hstart-windowHeight)/strideHeight + 1;
|
||||
}
|
||||
int wstart = posw+padLeft;
|
||||
if (wstart < windowWidth) {
|
||||
wstart = 0;
|
||||
} else {
|
||||
wstart = (wstart-windowWidth)/strideWidth + 1;
|
||||
}
|
||||
const int hend = min((posh+padTop)/strideHeight +1, dyHeight);
|
||||
const int wend = min((posw+padLeft)/strideWidth +1, dyWidth);
|
||||
const int channelStart = posn*dyCHW + posc*dyHW;
|
||||
T dySum = static_cast<T>(0.0);
|
||||
for (int hcur = hstart; hcur < hend; ++hcur) {
|
||||
for (int wcur = wstart; wcur < wend; ++wcur) {
|
||||
const int curIdx = hcur*dyWidth + wcur;
|
||||
S maxIdx = index[channelStart+curIdx];
|
||||
if (maxIdx == posIdx) {
|
||||
dySum += dy[channelStart+curIdx];
|
||||
}
|
||||
}
|
||||
}
|
||||
dx[pos] = dySum;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <>
|
||||
__global__ void MaxPoolWithArgmaxGrad(const half* x,
|
||||
const half* dy,
|
||||
const int* index,
|
||||
const int n,
|
||||
const int c,
|
||||
const int xHeight,
|
||||
const int xWidth,
|
||||
const int dyHeight,
|
||||
const int dyWidth,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
const int xNCHW,
|
||||
const int xCHW,
|
||||
const int xHW,
|
||||
const int dyCHW,
|
||||
const int dyHW,
|
||||
half* dx) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
pos < (xNCHW);
|
||||
pos += blockDim.x * gridDim.x) {
|
||||
const int posn = pos / xCHW;
|
||||
const int posc = pos / xHW % c;
|
||||
const int posh = pos / xHeight % xHeight;
|
||||
const int posw = pos % xWidth;
|
||||
const int posIdx = posh*xWidth + posw;
|
||||
int hstart = posh+padTop;
|
||||
if (hstart < windowHeight) {
|
||||
hstart = 0;
|
||||
} else {
|
||||
hstart = (hstart-windowHeight)/strideHeight + 1;
|
||||
}
|
||||
int wstart = posw+padLeft;
|
||||
if (wstart < windowWidth) {
|
||||
wstart = 0;
|
||||
} else {
|
||||
wstart = (wstart-windowWidth)/strideWidth + 1;
|
||||
}
|
||||
const int hend = min((posh+padTop)/strideHeight +1, dyHeight);
|
||||
const int wend = min((posw+padLeft)/strideWidth +1, dyWidth);
|
||||
const int channelStart = posn*dyCHW + posc*dyHW;
|
||||
float dySum = 0.0f;
|
||||
for (int hcur = hstart; hcur < hend; ++hcur) {
|
||||
for (int wcur = wstart; wcur < wend; ++wcur) {
|
||||
const int curIdx = hcur*dyWidth + wcur;
|
||||
int maxIdx = index[channelStart+curIdx];
|
||||
if (maxIdx == posIdx) {
|
||||
dySum += __half2float(dy[channelStart+curIdx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dx[pos] = __float2half(dySum);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
void CalMaxPoolWithArgmaxGrad(const T* x,
|
||||
const T* dy,
|
||||
const S* index,
|
||||
const int n,
|
||||
const int c,
|
||||
const int xHeight,
|
||||
const int xWidth,
|
||||
const int dyHeight,
|
||||
const int dyWidth,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
T* dx,
|
||||
cudaStream_t cuda_stream) {
|
||||
const int xHW = xHeight*xWidth;
|
||||
const int xCHW = c*xHW;
|
||||
const int xNCHW = n*xCHW;
|
||||
const int dyHW = dyHeight*dyWidth;
|
||||
const int dyCHW = c*dyHW;
|
||||
MaxPoolWithArgmaxGrad<<<GET_BLOCKS(xNCHW),
|
||||
GET_THREADS,
|
||||
0,
|
||||
cuda_stream>>>(
|
||||
x,
|
||||
dy,
|
||||
index,
|
||||
n,
|
||||
c,
|
||||
xHeight,
|
||||
xWidth,
|
||||
dyHeight,
|
||||
dyWidth,
|
||||
windowHeight,
|
||||
windowWidth,
|
||||
strideHeight,
|
||||
strideWidth,
|
||||
padTop,
|
||||
padLeft,
|
||||
xNCHW,
|
||||
xCHW,
|
||||
xHW,
|
||||
dyCHW,
|
||||
dyHW,
|
||||
dx);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalMaxPoolWithArgmaxGrad<float, int>(const float* x,
|
||||
const float* dy,
|
||||
const int* index,
|
||||
const int n,
|
||||
const int c,
|
||||
const int xHeight,
|
||||
const int xWidth,
|
||||
const int dyHeight,
|
||||
const int dyWidth,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
float* dx,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalMaxPoolWithArgmaxGrad<half, int>(const half* x,
|
||||
const half* dy,
|
||||
const int* index,
|
||||
const int n,
|
||||
const int c,
|
||||
const int xHeight,
|
||||
const int xWidth,
|
||||
const int dyHeight,
|
||||
const int dyWidth,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
half* dx,
|
||||
cudaStream_t cuda_stream);
|
|
@ -0,0 +1,25 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MAXPOOLWITHARGMAX_GRAD_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MAXPOOLWITHARGMAX_GRAD_H_
|
||||
template <typename T, typename S>
|
||||
void CalMaxPoolWithArgmaxGrad(const T* x, const T* dy, const S* index, const int n, const int c, const int xHeight,
|
||||
const int xWidth, const int dyHeight, const int dyWidth, const int windowHeight,
|
||||
const int windowWidth, const int strideHeight, const int strideWidth, const int padTop,
|
||||
const int padLeft, T* dx, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MAXPOOLWITHARGMAX_GRAD_H_
|
|
@ -0,0 +1,149 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include "maxpool_with_argmax_impl.cuh"
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
#include "include/cuda_fp16.h"
|
||||
template <typename T, typename S>
|
||||
__global__ void MaxPoolWithArgmax(const T* input,
|
||||
const int n,
|
||||
const int c,
|
||||
const int h,
|
||||
const int w,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
const int outputHeight,
|
||||
const int outputWidth,
|
||||
const int outputNCHW,
|
||||
const int outputCHW,
|
||||
const int outputHW,
|
||||
T* output,
|
||||
S *index) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
pos < (outputNCHW);
|
||||
pos += blockDim.x * gridDim.x) {
|
||||
const int posn = pos / outputCHW;
|
||||
const int posc = pos / outputHW % c;
|
||||
const int posh = pos / outputHeight % outputHeight;
|
||||
const int posw = pos % outputWidth;
|
||||
int hstart = posh * strideHeight - padTop;
|
||||
int wstart = posw * strideWidth - padLeft;
|
||||
const int hend = min(hstart + windowHeight, h);
|
||||
const int wend = min(wstart + windowWidth, w);
|
||||
hstart = max(hstart, 0);
|
||||
wstart = max(wstart, 0);
|
||||
S inputStart = posn*c*h*w + posc*h*w;
|
||||
S maxIdx = hstart*w + wstart;
|
||||
T maxData = input[inputStart+maxIdx];
|
||||
for (int hcur = hstart; hcur < hend; ++hcur) {
|
||||
for (int wcur = wstart; wcur < wend; ++wcur) {
|
||||
S inputIdx = hcur*w + wcur;
|
||||
T inputData = input[inputStart+inputIdx];
|
||||
if (inputData > maxData) {
|
||||
maxIdx = inputIdx;
|
||||
maxData = inputData;
|
||||
}
|
||||
}
|
||||
}
|
||||
output[pos] = maxData;
|
||||
index[pos] = maxIdx;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
void CalMaxPoolWithArgmax(const T* input,
|
||||
const int n,
|
||||
const int c,
|
||||
const int h,
|
||||
const int w,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
const int outputHeight,
|
||||
const int outputWidth,
|
||||
T* output,
|
||||
S *index,
|
||||
cudaStream_t cuda_stream) {
|
||||
const int outputNCHW = n*c*outputHeight*outputWidth;
|
||||
const int outputCHW = c*outputHeight*outputWidth;
|
||||
const int outputHW = outputHeight*outputWidth;
|
||||
MaxPoolWithArgmax<<<GET_BLOCKS(n*c*outputHeight*outputWidth),
|
||||
GET_THREADS,
|
||||
0,
|
||||
cuda_stream>>>(
|
||||
input,
|
||||
n,
|
||||
c,
|
||||
h,
|
||||
w,
|
||||
windowHeight,
|
||||
windowWidth,
|
||||
strideHeight,
|
||||
strideWidth,
|
||||
padTop,
|
||||
padLeft,
|
||||
outputHeight,
|
||||
outputWidth,
|
||||
outputNCHW,
|
||||
outputCHW,
|
||||
outputHW,
|
||||
output,
|
||||
index);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalMaxPoolWithArgmax<float, int>(const float* input,
|
||||
const int n,
|
||||
const int c,
|
||||
const int h,
|
||||
const int w,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
const int outputHeight,
|
||||
const int outputWidth,
|
||||
float* output,
|
||||
int* index,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
template void CalMaxPoolWithArgmax<half, int>(const half* input,
|
||||
const int n,
|
||||
const int c,
|
||||
const int h,
|
||||
const int w,
|
||||
const int windowHeight,
|
||||
const int windowWidth,
|
||||
const int strideHeight,
|
||||
const int strideWidth,
|
||||
const int padTop,
|
||||
const int padLeft,
|
||||
const int outputHeight,
|
||||
const int outputWidth,
|
||||
half* output,
|
||||
int* index,
|
||||
cudaStream_t cuda_stream);
|
|
@ -0,0 +1,25 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MAXPOOLWITHARGMAX_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MAXPOOLWITHARGMAX_H_
|
||||
template <typename T, typename S>
|
||||
void CalMaxPoolWithArgmax(const T* input, const int n, const int c, const int h, const int w, const int windowHeight,
|
||||
const int windowWidth, const int strideHeight, const int strideWidth, const int padTop,
|
||||
const int padLeft, const int outputHeight, const int outputWidth, T* output, S *index,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MAXPOOLWITHARGMAX_H_
|
|
@ -0,0 +1,30 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/maxpool_with_argmax_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
MaxPoolWithArgmax,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32),
|
||||
MaxPoolWithArgmaxGpuFwdKernel, float, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
MaxPoolWithArgmax,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeInt32),
|
||||
MaxPoolWithArgmaxGpuFwdKernel, half, int)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,160 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MAXPOOLWITHARGMAX_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MAXPOOLWITHARGMAX_GPU_KERNEL_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/maxpool_with_argmax_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/kernel_constants.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T, typename S>
|
||||
class MaxPoolWithArgmaxGpuFwdKernel : public GpuKernel {
|
||||
public:
|
||||
MaxPoolWithArgmaxGpuFwdKernel()
|
||||
: n_(0),
|
||||
c_(0),
|
||||
input_height_(0),
|
||||
input_width_(0),
|
||||
window_height_(0),
|
||||
window_width_(0),
|
||||
pad_height_(0),
|
||||
pad_width_(0),
|
||||
pad_top_(0),
|
||||
pad_left_(0),
|
||||
stride_height_(0),
|
||||
stride_width_(0),
|
||||
output_height_(0),
|
||||
output_width_(0),
|
||||
input_size_(0),
|
||||
output_size_(0) {}
|
||||
~MaxPoolWithArgmaxGpuFwdKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) {
|
||||
T *input_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
S *index_addr = GetDeviceAddress<S>(outputs, 1);
|
||||
CalMaxPoolWithArgmax(input_addr, n_, c_, input_height_, input_width_, window_height_, window_width_, stride_height_,
|
||||
stride_width_, pad_top_, pad_left_, output_height_, output_width_, output_addr, index_addr,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but MaxPoolWithArgmax needs 1 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 2) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but MaxPoolWithArgmax needs 2 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
input_size_ = sizeof(T);
|
||||
for (auto x : input_shape) {
|
||||
input_size_ *= x;
|
||||
}
|
||||
output_size_ = sizeof(T);
|
||||
for (auto x : output_shape) {
|
||||
output_size_ *= x;
|
||||
}
|
||||
n_ = SizeToInt(input_shape[0]);
|
||||
c_ = SizeToInt(input_shape[1]);
|
||||
input_height_ = SizeToInt(input_shape[2]);
|
||||
input_width_ = SizeToInt(input_shape[3]);
|
||||
output_height_ = SizeToInt(output_shape[2]);
|
||||
output_width_ = SizeToInt(output_shape[3]);
|
||||
auto window = GetValue<std::vector<int>>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("ksize"));
|
||||
window_height_ = window[1];
|
||||
window_width_ = window[2];
|
||||
auto stride = GetValue<std::vector<int>>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("strides"));
|
||||
stride_height_ = stride[1];
|
||||
stride_width_ = stride[2];
|
||||
pad_mode_ = GetValue<std::string>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("padding"));
|
||||
pad_top_ = 0;
|
||||
pad_left_ = 0;
|
||||
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) {
|
||||
SetPad();
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
output_size_list_.push_back(output_size_ / sizeof(T) * sizeof(S));
|
||||
}
|
||||
|
||||
private:
|
||||
void SetPad() {
|
||||
pad_height_ = std::max<int>(
|
||||
0, (((input_height_ / stride_height_) * stride_height_ == input_height_ ? (input_height_ / stride_height_)
|
||||
: (input_height_ / stride_height_) + 1) -
|
||||
1) *
|
||||
stride_height_ +
|
||||
window_height_ - input_height_);
|
||||
pad_width_ = std::max<int>(
|
||||
0, (((input_width_ / stride_width_) * stride_width_ == input_width_ ? (input_width_ / stride_width_)
|
||||
: (input_width_ / stride_width_) + 1) -
|
||||
1) *
|
||||
stride_width_ +
|
||||
window_width_ - input_width_);
|
||||
pad_top_ = pad_height_ / 2;
|
||||
pad_left_ = pad_width_ / 2;
|
||||
}
|
||||
|
||||
std::string pad_mode_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
|
||||
int n_;
|
||||
int c_;
|
||||
int input_height_;
|
||||
int input_width_;
|
||||
int window_height_;
|
||||
int window_width_;
|
||||
int pad_height_;
|
||||
int pad_width_;
|
||||
int pad_top_;
|
||||
int pad_left_;
|
||||
int stride_height_;
|
||||
int stride_width_;
|
||||
int output_height_;
|
||||
int output_width_;
|
||||
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MAXPOOLWITHARGMAX_GPU_KERNEL_H_
|
|
@ -0,0 +1,36 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/maxpool_with_argmax_grad_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_TWO(MaxPoolGradWithArgmax,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
MaxPoolWithArgmaxGradGpuKernel, float, int)
|
||||
MS_REG_GPU_KERNEL_TWO(MaxPoolGradWithArgmax,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
MaxPoolWithArgmaxGradGpuKernel, half, int)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,168 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MAXPOOLWITHARGMAX_GRAD_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MAXPOOLWITHARGMAX_GRAD_GPU_KERNEL_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/maxpool_with_argmax_grad_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/kernel_constants.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T, typename S>
|
||||
class MaxPoolWithArgmaxGradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
MaxPoolWithArgmaxGradGpuKernel()
|
||||
: n_(0),
|
||||
c_(0),
|
||||
x_height_(0),
|
||||
x_width_(0),
|
||||
dy_height_(0),
|
||||
dy_width_(0),
|
||||
x_size_(0),
|
||||
dy_size_(0),
|
||||
index_size_(0),
|
||||
dx_size_(0) {}
|
||||
~MaxPoolWithArgmaxGradGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) {
|
||||
T *x_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
T *dy_addr = GetDeviceAddress<T>(inputs, 1);
|
||||
S *index_addr = GetDeviceAddress<S>(inputs, 2);
|
||||
T *dx_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
CalMaxPoolWithArgmaxGrad(x_addr, dy_addr, index_addr, n_, c_, x_height_, x_width_, dy_height_, dy_width_,
|
||||
window_height_, window_width_, stride_height_, stride_width_, pad_top_, pad_left_, dx_addr,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 3) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but MaxPoolGradWithArgmax needs 3 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but MaxPoolGradWithArgmax needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto dy_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
auto index_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
auto dx_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
x_size_ = sizeof(T);
|
||||
for (auto x : x_shape) {
|
||||
x_size_ *= x;
|
||||
}
|
||||
dy_size_ = sizeof(T);
|
||||
for (auto x : dy_shape) {
|
||||
dy_size_ *= x;
|
||||
}
|
||||
index_size_ = sizeof(S);
|
||||
for (auto x : index_shape) {
|
||||
index_size_ *= x;
|
||||
}
|
||||
dx_size_ = sizeof(T);
|
||||
for (auto x : dx_shape) {
|
||||
dx_size_ *= x;
|
||||
}
|
||||
n_ = SizeToInt(x_shape[0]);
|
||||
c_ = SizeToInt(x_shape[1]);
|
||||
x_height_ = SizeToInt(x_shape[2]);
|
||||
x_width_ = SizeToInt(x_shape[3]);
|
||||
dy_height_ = SizeToInt(dy_shape[2]);
|
||||
dy_width_ = SizeToInt(dy_shape[3]);
|
||||
auto window = GetValue<std::vector<int>>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("ksize"));
|
||||
window_height_ = window[1];
|
||||
window_width_ = window[2];
|
||||
auto stride = GetValue<std::vector<int>>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("strides"));
|
||||
stride_height_ = stride[1];
|
||||
stride_width_ = stride[2];
|
||||
pad_mode_ = GetValue<std::string>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("padding"));
|
||||
pad_top_ = 0;
|
||||
pad_left_ = 0;
|
||||
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) {
|
||||
SetPad();
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(x_size_);
|
||||
input_size_list_.push_back(dy_size_);
|
||||
input_size_list_.push_back(index_size_);
|
||||
output_size_list_.push_back(dx_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
void SetPad() {
|
||||
pad_height_ = std::max<int>(
|
||||
0, (((x_height_ / stride_height_) * stride_height_ == x_height_ ? (x_height_ / stride_height_)
|
||||
: (x_height_ / stride_height_) + 1) -
|
||||
1) *
|
||||
stride_height_ +
|
||||
window_height_ - x_height_);
|
||||
pad_width_ =
|
||||
std::max<int>(0, (((x_width_ / stride_width_) * stride_width_ == x_width_ ? (x_width_ / stride_width_)
|
||||
: (x_width_ / stride_width_) + 1) -
|
||||
1) *
|
||||
stride_width_ +
|
||||
window_width_ - x_width_);
|
||||
pad_top_ = pad_height_ / 2;
|
||||
pad_left_ = pad_width_ / 2;
|
||||
}
|
||||
|
||||
std::string pad_mode_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
|
||||
int n_;
|
||||
int c_;
|
||||
int x_height_;
|
||||
int x_width_;
|
||||
int dy_height_;
|
||||
int dy_width_;
|
||||
int window_height_;
|
||||
int window_width_;
|
||||
int pad_height_;
|
||||
int pad_width_;
|
||||
int pad_top_;
|
||||
int pad_left_;
|
||||
int stride_height_;
|
||||
int stride_width_;
|
||||
|
||||
size_t x_size_;
|
||||
size_t dy_size_;
|
||||
size_t index_size_;
|
||||
size_t dx_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MAXPOOLWITHARGMAX_GRAD_GPU_KERNEL_H_
|
|
@ -1181,6 +1181,7 @@ class MaxPoolWithArgmax(_Pool):
|
|||
def __init__(self, ksize=1, strides=1, padding="valid"):
|
||||
super(MaxPoolWithArgmax, self).__init__(ksize, strides, padding)
|
||||
self.is_tbe = context.get_context("device_target") == "Ascend"
|
||||
self.is_gpu = context.get_context("device_target") == "GPU"
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
out_shape = _Pool.infer_shape(self, x_shape)
|
||||
|
@ -1207,6 +1208,8 @@ class MaxPoolWithArgmax(_Pool):
|
|||
out_dtype = x_dtype
|
||||
validator.check_tensor_type_same({"x": x_dtype}, (mstype.float16, mstype.float32), self.name)
|
||||
argmax_dtype = mstype.uint16
|
||||
if self.is_gpu:
|
||||
argmax_dtype = mstype.int32
|
||||
return out_dtype, argmax_dtype
|
||||
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ if __name__ == '__main__':
|
|||
if device_target == "Ascend":
|
||||
context.set_context(device_id=cfg.device_id)
|
||||
|
||||
net = GoogleNet(num_classes=cfg.num_classes, platform=device_target)
|
||||
net = GoogleNet(num_classes=cfg.num_classes)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
|
||||
weight_decay=cfg.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
|
|
|
@ -41,5 +41,10 @@ mkdir ../train
|
|||
cd ../train || exit
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="$2"
|
||||
mpirun -n $1 --allow-run-as-root \
|
||||
python3 ${BASEPATH}/../train.py > train.log 2>&1 &
|
||||
if [ $1 -gt 1 ]
|
||||
then
|
||||
mpirun -n $1 --allow-run-as-root \
|
||||
python3 ${BASEPATH}/../train.py > train.log 2>&1 &
|
||||
else
|
||||
python3 ${BASEPATH}/../train.py > train.log 2>&1 &
|
||||
fi
|
||||
|
|
|
@ -56,35 +56,24 @@ class Inception(nn.Cell):
|
|||
Inception Block
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes, platform="Ascend"):
|
||||
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
|
||||
super(Inception, self).__init__()
|
||||
self.platform = platform
|
||||
self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1)
|
||||
self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1),
|
||||
Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)])
|
||||
self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1),
|
||||
Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)])
|
||||
if self.platform == "Ascend":
|
||||
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
|
||||
else: # GPU
|
||||
self.maxpool = P.MaxPool(ksize=3, strides=1, padding="same")
|
||||
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
|
||||
self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1)
|
||||
self.concat = P.Concat(axis=1)
|
||||
|
||||
def construct(self, x):
|
||||
'''
|
||||
construct inception model
|
||||
'''
|
||||
branch1 = self.b1(x)
|
||||
branch2 = self.b2(x)
|
||||
branch3 = self.b3(x)
|
||||
if self.platform == "Ascend":
|
||||
cell, argmax = self.maxpool(x)
|
||||
branch4 = self.b4(cell)
|
||||
_ = argmax
|
||||
else: # GPU
|
||||
cell = self.maxpool(x)
|
||||
branch4 = self.b4(cell)
|
||||
cell, argmax = self.maxpool(x)
|
||||
branch4 = self.b4(cell)
|
||||
_ = argmax
|
||||
return self.concat((branch1, branch2, branch3, branch4))
|
||||
|
||||
|
||||
|
@ -93,82 +82,61 @@ class GoogleNet(nn.Cell):
|
|||
Googlenet architecture
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes, platform="Ascend"):
|
||||
def __init__(self, num_classes):
|
||||
super(GoogleNet, self).__init__()
|
||||
self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0)
|
||||
self.platform = platform
|
||||
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.conv2 = Conv2dBlock(64, 64, kernel_size=1)
|
||||
self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0)
|
||||
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32, platform=self.platform)
|
||||
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64, platform=self.platform)
|
||||
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64, platform=self.platform)
|
||||
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64, platform=self.platform)
|
||||
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64, platform=self.platform)
|
||||
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64, platform=self.platform)
|
||||
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128, platform=self.platform)
|
||||
if self.platform == "Ascend":
|
||||
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
|
||||
else: # GPU
|
||||
self.maxpool1 = P.MaxPool(ksize=3, strides=2, padding="same")
|
||||
self.maxpool2 = P.MaxPool(ksize=3, strides=2, padding="same")
|
||||
self.maxpool3 = P.MaxPool(ksize=3, strides=2, padding="same")
|
||||
self.maxpool4 = P.MaxPool(ksize=2, strides=2, padding="same")
|
||||
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128, platform=self.platform)
|
||||
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128, platform=self.platform)
|
||||
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32)
|
||||
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64)
|
||||
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64)
|
||||
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64)
|
||||
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64)
|
||||
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64)
|
||||
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128)
|
||||
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
|
||||
|
||||
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128)
|
||||
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128)
|
||||
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.dropout = nn.Dropout(keep_prob=0.8)
|
||||
self.flatten = nn.Flatten()
|
||||
self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(),
|
||||
bias_init=weight_variable())
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
'''
|
||||
construct googlenet model
|
||||
'''
|
||||
x = self.conv1(x)
|
||||
if self.platform == "Ascend":
|
||||
x, argmax = self.maxpool1(x)
|
||||
else: # GPU
|
||||
x = self.maxpool1(x)
|
||||
x, argmax = self.maxpool1(x)
|
||||
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
if self.platform == "Ascend":
|
||||
x, argmax = self.maxpool2(x)
|
||||
else: # GPU
|
||||
x = self.maxpool2(x)
|
||||
x, argmax = self.maxpool2(x)
|
||||
|
||||
x = self.block3a(x)
|
||||
x = self.block3b(x)
|
||||
if self.platform == "Ascend":
|
||||
x, argmax = self.maxpool3(x)
|
||||
else: # GPU
|
||||
x = self.maxpool3(x)
|
||||
x, argmax = self.maxpool3(x)
|
||||
|
||||
x = self.block4a(x)
|
||||
x = self.block4b(x)
|
||||
x = self.block4c(x)
|
||||
x = self.block4d(x)
|
||||
x = self.block4e(x)
|
||||
if self.platform == "Ascend":
|
||||
x, argmax = self.maxpool4(x)
|
||||
x = self.block5a(x)
|
||||
x = self.block5b(x)
|
||||
x, argmax = self.maxpool4(x)
|
||||
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
_ = argmax
|
||||
else: # GPU
|
||||
x = self.maxpool4(x)
|
||||
x = self.block5a(x)
|
||||
x = self.block5b(x)
|
||||
x = self.block5a(x)
|
||||
x = self.block5b(x)
|
||||
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
|
||||
_ = argmax
|
||||
return x
|
||||
|
|
|
@ -93,7 +93,7 @@ if __name__ == '__main__':
|
|||
dataset = create_dataset(cfg.data_path, 1)
|
||||
batch_num = dataset.get_dataset_size()
|
||||
|
||||
net = GoogleNet(num_classes=cfg.num_classes, platform=device_target)
|
||||
net = GoogleNet(num_classes=cfg.num_classes)
|
||||
# Continue training if set pre_trained to be True
|
||||
if cfg.pre_trained:
|
||||
param_dict = load_checkpoint(cfg.checkpoint_path)
|
||||
|
|
|
@ -0,0 +1,147 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
class Net_Pool(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net_Pool, self).__init__()
|
||||
self.maxpool_fun = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="VALID")
|
||||
|
||||
def construct(self, x):
|
||||
return self.maxpool_fun(x)
|
||||
|
||||
|
||||
class Net_Pool2(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net_Pool2, self).__init__()
|
||||
self.maxpool_fun = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="SAME")
|
||||
|
||||
def construct(self, x):
|
||||
return self.maxpool_fun(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_maxpool_with_argmax_2d():
|
||||
x = Tensor(np.array([[[
|
||||
[0, 1, 2, 3, -4, -5],
|
||||
[6, 7, 8, 9, -10, -11],
|
||||
[12, 13, 14, -15, -16, -17],
|
||||
[18, 19, 20, 21, 22, 23],
|
||||
[24, 25, 26, 27, 28, 29],
|
||||
[30, 31, 32, 33, 34, 35]
|
||||
]]]).astype(np.float32))
|
||||
expect_result = (np.array([[[
|
||||
[7, 9, -4],
|
||||
[19, 21, 23],
|
||||
[31, 33, 35]
|
||||
]]]))
|
||||
expect_result2 = (np.array([[[
|
||||
[14, 14, -4],
|
||||
[26, 28, 29],
|
||||
[32, 34, 35]
|
||||
]]]))
|
||||
expect_index_result = (np.array([[[
|
||||
[7, 9, 4],
|
||||
[19, 21, 23],
|
||||
[31, 33, 35]
|
||||
]]]))
|
||||
expect__index_result2 = (np.array([[[
|
||||
[14, 14, 4],
|
||||
[26, 28, 29],
|
||||
[32, 34, 35]
|
||||
]]]))
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
maxpool2d = Net_Pool()
|
||||
maxpool2d2 = Net_Pool2()
|
||||
output2, index2 = maxpool2d2(x)
|
||||
output, index = maxpool2d(x)
|
||||
assert (output.asnumpy() == expect_result).all()
|
||||
assert (output2.asnumpy() == expect_result2).all()
|
||||
assert (index.asnumpy() == expect_index_result).all()
|
||||
assert (index2.asnumpy() == expect__index_result2).all()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
maxpool2d = Net_Pool()
|
||||
maxpool2d2 = Net_Pool2()
|
||||
output2, index2 = maxpool2d2(x)
|
||||
output, index = maxpool2d(x)
|
||||
assert (output.asnumpy() == expect_result).all()
|
||||
assert (output2.asnumpy() == expect_result2).all()
|
||||
assert (index.asnumpy() == expect_index_result).all()
|
||||
assert (index2.asnumpy() == expect__index_result2).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_maxpool_with_argmax_2d_fp16():
|
||||
x = Tensor(np.array([[[
|
||||
[0, 1, 2, 3, -4, -5],
|
||||
[6, 7, 8, 9, -10, -11],
|
||||
[12, 13, 14, -15, -16, -17],
|
||||
[18, 19, 20, 21, 22, 23],
|
||||
[24, 25, 26, 27, 28, 29],
|
||||
[30, 31, 32, 33, 34, 35]
|
||||
]]]).astype(np.float16))
|
||||
expect_result = (np.array([[[
|
||||
[7, 9, -4],
|
||||
[19, 21, 23],
|
||||
[31, 33, 35]
|
||||
]]]))
|
||||
expect_result2 = (np.array([[[
|
||||
[14, 14, -4],
|
||||
[26, 28, 29],
|
||||
[32, 34, 35]
|
||||
]]]))
|
||||
expect_index_result = (np.array([[[
|
||||
[7, 9, 4],
|
||||
[19, 21, 23],
|
||||
[31, 33, 35]
|
||||
]]]))
|
||||
expect__index_result2 = (np.array([[[
|
||||
[14, 14, 4],
|
||||
[26, 28, 29],
|
||||
[32, 34, 35]
|
||||
]]]))
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
maxpool2d = Net_Pool()
|
||||
maxpool2d2 = Net_Pool2()
|
||||
output2, index2 = maxpool2d2(x)
|
||||
output, index = maxpool2d(x)
|
||||
assert (output.asnumpy() == expect_result).all()
|
||||
assert (output2.asnumpy() == expect_result2).all()
|
||||
assert (index.asnumpy() == expect_index_result).all()
|
||||
assert (index2.asnumpy() == expect__index_result2).all()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
maxpool2d = Net_Pool()
|
||||
maxpool2d2 = Net_Pool2()
|
||||
output2, index2 = maxpool2d2(x)
|
||||
output, index = maxpool2d(x)
|
||||
assert (output.asnumpy() == expect_result).all()
|
||||
assert (output2.asnumpy() == expect_result2).all()
|
||||
assert (index.asnumpy() == expect_index_result).all()
|
||||
assert (index2.asnumpy() == expect__index_result2).all()
|
||||
|
|
@ -0,0 +1,115 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
|
||||
class Net_Pool_Grad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net_Pool_Grad, self).__init__()
|
||||
self.maxpool_grad_fun = G.MaxPoolGradWithArgmax(padding="VALID", ksize=2, strides=2)
|
||||
|
||||
def construct(self, x, dy, index):
|
||||
return self.maxpool_grad_fun(x, dy, index)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_maxpool2d_grad():
|
||||
x = Tensor(np.array([[[
|
||||
[0, 1, 2, 3, 4, 5],
|
||||
[6, 7, 8, 9, 10, 11],
|
||||
[12, 13, 14, 15, 16, 17],
|
||||
[18, 19, 20, 21, 22, 23],
|
||||
[24, 25, 26, 27, 28, 29],
|
||||
[30, 31, 32, 33, 34, 35]
|
||||
]]]).astype(np.float32))
|
||||
dy = Tensor(np.array([[[
|
||||
[0.7, 0.9, 0.11],
|
||||
[0.19, 0.21, 0.23],
|
||||
[0.31, 0.33, 0.35]
|
||||
]]]).astype(np.float32))
|
||||
index = Tensor(np.array([[[
|
||||
[7, 9, 11],
|
||||
[19, 21, 23],
|
||||
[31, 33, 35]
|
||||
]]]).astype(np.int32))
|
||||
expect_result = (np.array([[[
|
||||
[0., 0., 0., 0., 0., 0.],
|
||||
[0., 0.7, 0., 0.9, 0., 0.11],
|
||||
[0., 0., 0., 0., 0., 0.],
|
||||
[0., 0.19, 0., 0.21, 0., 0.23],
|
||||
[0., 0., 0., 0., 0., 0.],
|
||||
[0., 0.31, 0., 0.33, 0., 0.35]
|
||||
]]]))
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
maxpool2d_grad = Net_Pool_Grad()
|
||||
output = maxpool2d_grad(x, dy, index)
|
||||
assert np.allclose(expect_result, output.asnumpy())
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
maxpool2d_grad = Net_Pool_Grad()
|
||||
output = maxpool2d_grad(x, dy, index)
|
||||
assert np.allclose(expect_result, output.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_maxpool2d_grad_fp16():
|
||||
x = Tensor(np.array([[[
|
||||
[0, 1, 2, 3, 4, 5],
|
||||
[6, 7, 8, 9, 10, 11],
|
||||
[12, 13, 14, 15, 16, 17],
|
||||
[18, 19, 20, 21, 22, 23],
|
||||
[24, 25, 26, 27, 28, 29],
|
||||
[30, 31, 32, 33, 34, 35]
|
||||
]]]).astype(np.float16))
|
||||
dy = Tensor(np.array([[[
|
||||
[0.7, 0.9, 0.11],
|
||||
[0.19, 0.21, 0.23],
|
||||
[0.31, 0.33, 0.35]
|
||||
]]]).astype(np.float16))
|
||||
index = Tensor(np.array([[[
|
||||
[7, 9, 11],
|
||||
[19, 21, 23],
|
||||
[31, 33, 35]
|
||||
]]]).astype(np.int32))
|
||||
expect_result = np.array([[[
|
||||
[0., 0., 0., 0., 0., 0.],
|
||||
[0., 0.7, 0., 0.9, 0., 0.11],
|
||||
[0., 0., 0., 0., 0., 0.],
|
||||
[0., 0.19, 0., 0.21, 0., 0.23],
|
||||
[0., 0., 0., 0., 0., 0.],
|
||||
[0., 0.31, 0., 0.33, 0., 0.35]
|
||||
]]]).astype(np.float16)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
maxpool2d_grad = Net_Pool_Grad()
|
||||
output = maxpool2d_grad(x, dy, index)
|
||||
assert np.allclose(expect_result, output.asnumpy())
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
maxpool2d_grad = Net_Pool_Grad()
|
||||
output = maxpool2d_grad(x, dy, index)
|
||||
assert np.allclose(expect_result, output.asnumpy())
|
Loading…
Reference in New Issue