forked from mindspore-Ecosystem/mindspore
[feat][assistant][I3T925] add new math operator Erfinv
This commit is contained in:
parent
dddeb06129
commit
ca6f3ef155
|
@ -502,6 +502,7 @@ inline const PrimitivePtr kPrimAcoshGrad = std::make_shared<Primitive>("AcoshGra
|
|||
inline const PrimitivePtr kPrimFloorMod = std::make_shared<Primitive>("FloorMod");
|
||||
inline const PrimitivePtr kPrimWhere = std::make_shared<Primitive>("Where");
|
||||
inline const PrimitivePtr kPrimIdentityMath = std::make_shared<Primitive>("Identity", kSideEffectPropagate);
|
||||
inline const PrimitivePtr kPrimErfinv = std::make_shared<Primitive>("Erfinv");
|
||||
inline const PrimitivePtr kPrimIsNan = std::make_shared<Primitive>("IsNan");
|
||||
inline const PrimitivePtr kPrimIsInf = std::make_shared<Primitive>("IsInf");
|
||||
inline const PrimitivePtr kPrimIsFinite = std::make_shared<Primitive>("IsFinite");
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ops/erfinv.h"
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <set>
|
||||
#include "ops/op_utils.h"
|
||||
#include "abstract/primitive_infer_map.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr ErfinvInferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
CheckAndConvertUtils::CheckInteger("input_x numbers", input_args.size(), kEqual, 1, prim_name);
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
auto shape_map = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape());
|
||||
auto in_shape = shape_map[kShape];
|
||||
return std::make_shared<abstract::Shape>(in_shape);
|
||||
}
|
||||
|
||||
TypePtr ErfinvInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
auto op_name = prim->name();
|
||||
CheckAndConvertUtils::CheckInteger("input_x number", input_args.size(), kEqual, 1, op_name);
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
const std::set<TypePtr> valid_types = {kFloat16, kFloat32};
|
||||
auto infer_type = input_args[0]->BuildType();
|
||||
CheckAndConvertUtils::CheckTensorTypeValid("input_x", infer_type, valid_types, prim->name());
|
||||
return infer_type;
|
||||
}
|
||||
} // namespace
|
||||
AbstractBasePtr ErfinvInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
return abstract::MakeAbstract(ErfinvInferShape(primitive, input_args), ErfinvInferType(primitive, input_args));
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(Erfinv, prim::kPrimErfinv, ErfinvInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,41 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_ERFINV_H_
|
||||
#define MINDSPORE_CORE_OPS_ERFINV_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "ops/primitive_c.h"
|
||||
#include "abstract/abstract_value.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameErfinv = "Erfinv";
|
||||
class Erfinv : public PrimitiveC {
|
||||
public:
|
||||
Erfinv() : PrimitiveC(kNameErfinv) { InitIOName({"input_x"}, {"output"}); }
|
||||
~Erfinv() = default;
|
||||
MS_DECLARE_PARENT(Erfinv, PrimitiveC);
|
||||
};
|
||||
|
||||
AbstractBasePtr ErfinvInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
using PrimErfinvPtr = std::shared_ptr<Erfinv>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_ERFINV_H_
|
|
@ -15,10 +15,10 @@
|
|||
|
||||
"""grad experimental impl."""
|
||||
from .._grad.grad_base import get_bprop_fn
|
||||
from . import grad_math_ops
|
||||
from . import grad_array_ops
|
||||
from . import grad_inner_ops
|
||||
from . import grad_nn_ops
|
||||
from . import grad_comm_ops
|
||||
from . import grad_math_ops
|
||||
|
||||
__all__ = ['get_bprop_fn']
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
"""Define the grad rules of math related operations."""
|
||||
|
||||
from mindspore.common import dtype as mstype
|
||||
import numpy as np
|
||||
from .. import functional as F
|
||||
from .. import operations as P
|
||||
from .._grad.grad_base import bprop_getters
|
||||
|
@ -45,3 +46,21 @@ def get_bprop_index_lerp(self):
|
|||
return dstart, dend, dweight
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Erfinv)
|
||||
def get_bprop_erfinv(self):
|
||||
"""Grad definition for `Erfinv` operation."""
|
||||
exp = P.Exp()
|
||||
square = P.Square()
|
||||
sqrt = P.Sqrt()
|
||||
cast = P.Cast()
|
||||
dtype = P.DType()
|
||||
|
||||
def bprop(input_x, out, dout):
|
||||
root_pi_over_two = cast(sqrt(F.scalar_to_tensor(np.pi)) / 2, dtype(dout))
|
||||
dout_square = square(dout)
|
||||
dx = dout * root_pi_over_two * exp(dout_square)
|
||||
return (dx,)
|
||||
|
||||
return bprop
|
||||
|
|
|
@ -396,6 +396,7 @@ from .ctc_loss_v2 import _ctc_loss_v2_tbe
|
|||
from .ctc_loss_v2_grad import _ctc_loss_v2_grad_tbe
|
||||
from .roll import _roll_tbe
|
||||
from .soft_shrink import _soft_shrink_tbe
|
||||
from .erfinv import _erfinv_tbe
|
||||
from .soft_shrink_grad import _soft_shrink_grad_tbe
|
||||
from .hsigmoid_grad import _hsigmoid_grad_tbe
|
||||
from .hsigmoid import _hsigmoid_tbe
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Erfinv op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
erfinv_op_info = TBERegOp("Erfinv") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("erfinv.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("erfinv") \
|
||||
.partial_flag(True) \
|
||||
.input(0, "input_x", False, "required", "all") \
|
||||
.output(0, "output", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(erfinv_op_info)
|
||||
def _erfinv_tbe():
|
||||
"""Erfinv TBE register"""
|
||||
return
|
|
@ -59,7 +59,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
|
|||
Reciprocal, CumSum, HistogramFixedWidth, SquaredDifference, Xdivy, Xlogy,
|
||||
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod,
|
||||
Square, Sub, TensorAdd, Add, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan,
|
||||
MatrixInverse, IndexAdd)
|
||||
MatrixInverse, IndexAdd, Erfinv)
|
||||
|
||||
from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal,
|
||||
RandomCategorical, StandardLaplace, Multinomial, UniformCandidateSampler,
|
||||
|
@ -241,6 +241,7 @@ __all__ = [
|
|||
'ReLU6',
|
||||
'Elu',
|
||||
'Erf',
|
||||
"Erfinv",
|
||||
'Erfc',
|
||||
'Sigmoid',
|
||||
'HSwish',
|
||||
|
@ -531,6 +532,7 @@ __all__ = [
|
|||
"BufferGetItem",
|
||||
"BufferSample",
|
||||
"NeighborListUpdateNew",
|
||||
"Erfinv"
|
||||
]
|
||||
|
||||
__all__.sort()
|
||||
|
|
|
@ -5269,3 +5269,36 @@ class IndexAdd(PrimitiveWithInfer):
|
|||
if dim != axis:
|
||||
validator.check('x dim %d' % dim, x_shape[dim], "y dim %d" % dim, y_shape[dim], Rel.EQ, self.name)
|
||||
return x_shape
|
||||
|
||||
|
||||
class Erfinv(Primitive):
|
||||
r"""
|
||||
Computes the inverse error function of input. The inverse error function is defined in the range (-1, 1) as:
|
||||
|
||||
.. math::
|
||||
erfinv(erf(x)) = x
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor to compute to, with data type float32, float16.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and dtype as `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If dtype of `input_x` is not one of: float32, float16.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([0, 0.5, -0.9]), mindspore.float32)
|
||||
>>> erfinv = P.Erfinv()
|
||||
>>> output = erfinv(x)
|
||||
>>> print(output)
|
||||
[ 0. 0.47695306 -1.1630805 ]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""Initialize Erfinv"""
|
||||
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
|
||||
|
|
|
@ -1667,6 +1667,10 @@ test_case_math_ops = [
|
|||
Tensor(np.random.rand(4).astype(np.int32))],
|
||||
'desc_bprop': [],
|
||||
'skip': ['backward']}),
|
||||
('Erfinv', {
|
||||
'block': P.Erfinv(),
|
||||
'desc_inputs': [Tensor(np.array([0.1, 0.1, 0.1]).astype(np.float16))],
|
||||
'desc_bprop': [Tensor(np.array([1, 1, 1]).astype(np.float16))]}),
|
||||
]
|
||||
|
||||
test_case_nn_ops = [
|
||||
|
|
Loading…
Reference in New Issue