forked from mindspore-Ecosystem/mindspore
add dump testcase
This commit is contained in:
parent
280e127f59
commit
c9b438e97b
|
@ -0,0 +1,25 @@
|
|||
{
|
||||
"common_dump_settings":{
|
||||
"dump_mode": 0,
|
||||
"path": "/tmp/async_dump/test_async_dump_net_multi_layer_mode1",
|
||||
"net_name": "test",
|
||||
"iteration": 0,
|
||||
"input_output": 2,
|
||||
"kernels": [
|
||||
"default/TensorAdd-op10",
|
||||
"Gradients/Default/network-WithLossCell/_backbone-ReLUReduceMeanDenseRelu/dense-Dense/gradBiasAdd/BiasAddGrad-op8",
|
||||
"Default/network-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/SoftmaxCrossEntropyWithLogits-op5",
|
||||
"Default/optimizer-Momentum/tuple_getitem-op29",
|
||||
"Default/optimizer-Momentum/ApplyMomentum-op12"
|
||||
],
|
||||
"support_device": [0,1,2,3,4,5,6,7]
|
||||
},
|
||||
"async_dump_settings": {
|
||||
"enable": true,
|
||||
"op_debug_mode": 0
|
||||
},
|
||||
"e2e_dump_settings": {
|
||||
"enable": false,
|
||||
"trans_flag": false
|
||||
}
|
||||
}
|
|
@ -22,6 +22,12 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.nn import Dense
|
||||
from mindspore.nn import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.nn import Momentum
|
||||
from mindspore.nn import TrainOneStepCell
|
||||
from mindspore.nn import WithLossCell
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
@ -81,3 +87,62 @@ def test_e2e_dump():
|
|||
add(Tensor(x), Tensor(y))
|
||||
time.sleep(5)
|
||||
assert len(os.listdir(dump_file_path)) == 5
|
||||
|
||||
class ReluReduceMeanDenseRelu(Cell):
|
||||
def __init__(self, kernel, bias, in_channel, num_class):
|
||||
super().__init__()
|
||||
self.relu = P.ReLU()
|
||||
self.mean = P.ReduceMean(keep_dims=False)
|
||||
self.dense = Dense(in_channel, num_class, kernel, bias)
|
||||
|
||||
def construct(self, x_):
|
||||
x_ = self.relu(x_)
|
||||
x_ = self.mean(x_, (2, 3))
|
||||
x_ = self.dense(x_)
|
||||
x_ = self.relu(x_)
|
||||
return x_
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_async_dump_net_multi_layer_mode1():
|
||||
test_name = "test_async_dump_net_multi_layer_mode1"
|
||||
json_file = os.path.join(os.getcwd(), "{}.json".format(test_name))
|
||||
device_id = context.get_context("device_id")
|
||||
dump_full_path = os.path.join("/tmp/async_dump/", "{}_{}".format(test_name, device_id))
|
||||
os.system("rm -rf {}/*".format(dump_full_path))
|
||||
os.environ["MINDSPORE_DUMP_CONFIG"] = json_file
|
||||
weight = Tensor(np.ones((1000, 2048)).astype(np.float32))
|
||||
bias = Tensor(np.ones((1000,)).astype(np.float32))
|
||||
net = ReluReduceMeanDenseRelu(weight, bias, 2048, 1000)
|
||||
criterion = SoftmaxCrossEntropyWithLogits(sparse=False)
|
||||
optimizer = Momentum(learning_rate=0.1, momentum=0.1, params=filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer)
|
||||
train_network.set_train()
|
||||
inputs = Tensor(np.random.randn(32, 2048, 7, 7).astype(np.float32))
|
||||
label = Tensor(np.zeros(shape=(32, 1000)).astype(np.float32))
|
||||
net_dict = train_network(inputs, label)
|
||||
|
||||
dump_path = "/tmp/async_dump/{}/device_{}/test_graph_0/0/0/".format(test_name, device_id)
|
||||
dump_file = os.listdir(dump_path)
|
||||
dump_file_name = ""
|
||||
for file in dump_file:
|
||||
if "SoftmaxCrossEntropyWithLogits" in file:
|
||||
dump_file_name = file
|
||||
dump_file_full_path = os.path.join(dump_path, dump_file_name)
|
||||
npy_path = os.path.join(os.getcwd(), "./{}".format(test_name))
|
||||
if os.path.exists(npy_path):
|
||||
shutil.rmtree(npy_path)
|
||||
os.mkdir(npy_path)
|
||||
cmd = "python /usr/local/Ascend/toolkit/tools/operator_cmp/compare/dump_data_conversion.pyc " \
|
||||
"-type offline -target numpy -i {0} -o {1}".format(dump_file_full_path, npy_path)
|
||||
os.system(cmd)
|
||||
npy_file_list = os.listdir(npy_path)
|
||||
dump_result = {}
|
||||
for file in npy_file_list:
|
||||
if "output.0.npy" in file:
|
||||
dump_result["output0"] = np.load(os.path.join(npy_path, file))
|
||||
for index, value in enumerate(net_dict):
|
||||
assert value.asnumpy() == dump_result["output0"][index]
|
||||
|
|
Loading…
Reference in New Issue